scispace - formally typeset
Search or ask a question
Journal Article

Oncomirs : microRNAs with a role in cancer

01 Jan 2007-Nature Reviews Genetics (Nature Publishing Group)-
TL;DR: I MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators as discussed by the authors, and have been shown to repress the expression of important cancer-related genes and might prove useful in the diagnosis and treatment of cancer.
Abstract: I MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators. They regulate diverse biological processes, and bioinformatic data indicates that each miRNA can control hundreds of gene targets, underscoring the potential influence of miRNAs on almost every genetic pathway. Recent evidence has shown that miRNA mutations or mis-expression correlate with various human cancers and indicates that miRNAs can function as tumour suppressors and oncogenes. miRNAs have been shown to repress the expression of important cancer-related genes and might prove useful in the diagnosis and treatment of cancer.
Citations
More filters
Journal ArticleDOI
TL;DR: Using real-time RT-PCR, the authors obtained microRNA expressions in 112 NSCLC patients, which were divided into the training and testing sets, and used Cox regression and risk-score analysis to identify a five microRNA signatures for the prediction of treatment outcome.

766 citations

Journal ArticleDOI
TL;DR: The results suggest that miR-221/222 can be regarded as a new family of oncogenes, directly targeting the tumor suppressor p27Kip1, and that their overexpression might be one of the factors contributing to the oncogenesis and progression of prostate carcinoma through p27kip1 down-regulation.

764 citations

Journal ArticleDOI
TL;DR: The present article highlights the role of various proinflammatory mediators in carcinogenesis and their promise as potential targets for chemoprevention of inflammation-associated carcinogenesis.
Abstract: Chronic inflammation plays a multifaceted role in carcinogenesis. Mounting evidence from preclinical and clinical studies suggests that persistent inflammation functions as a driving force in the journey to cancer. The possible mechanisms by which inflammation can contribute to carcinogenesis include induction of genomic instability, alterations in epigenetic events and subsequent inappropriate gene expression, enhanced proliferation of initiated cells, resistance to apoptosis, aggressive tumor neovascularization, invasion through tumor-associated basement membrane and metastasis, etc. Inflammation-induced reactive oxygen and nitrogen species cause damage to important cellular components (e.g., DNA, proteins and lipids), which can directly or indirectly contribute to malignant cell transformation. Overexpression, elevated secretion, or abnormal activation of proinflammatory mediators, such as cytokines, chemokines, cyclooxygenase-2, prostaglandins, inducible nitric oxide synthase, and nitric oxide, and a distinct network of intracellular signaling molecules including upstream kinases and transcription factors facilitate tumor promotion and progression. While inflammation promotes development of cancer, components of the tumor microenvironment, such as tumor cells, stromal cells in surrounding tissue and infiltrated inflammatory/immune cells generate an intratumoral inflammatory state by aberrant expression or activation of some proinflammatory molecules. Many of proinflammatory mediators, especially cytokines, chemokines and prostaglandins, turn on the angiogenic switches mainly controlled by vascular endothelial growth factor, thereby inducing inflammatory angiogenesis and tumor cell-stroma communication. This will end up with tumor angiogenesis, metastasis and invasion. Moreover, cellular microRNAs are emerging as a potential link between inflammation and cancer. The present article highlights the role of various proinflammatory mediators in carcinogenesis and their promise as potential targets for chemoprevention of inflammation-associated carcinogenesis.

762 citations

Journal ArticleDOI
TL;DR: It is proposed that microRNAs play an essential regulatory role in the development of cardiac hypertrophy, wherein downregulation of miR-1 is necessary for the relief of growth-related target genes from its repressive influence and induction ofhypertrophy.
Abstract: MicroRNAs are naturally existing, small, noncoding RNA molecules that downregulate posttranscriptional gene expression. Their expression pattern and function in the heart remain unknown. Here we report an array of microRNAs that are differentially and temporally regulated during cardiac hypertrophy. Significantly, the muscle-specific microRNA-1 (miR-1) was singularly downregulated as early as day 1 (0.56+/-0.036), persisting through day 7 (0.29+/-0.14), after aortic constriction-induced hypertrophy in a mouse model. Overexpression experiments showed that miR-1 inhibited its in silico-predicted, growth-related targets, including Ras GTPase-activating protein (RasGAP), cyclin-dependent kinase 9 (Cdk9), fibronectin, and Ras homolog enriched in brain (Rheb), in addition to protein synthesis and cell size. Thus, we propose that microRNAs play an essential regulatory role in the development of cardiac hypertrophy, wherein downregulation of miR-1 is necessary for the relief of growth-related target genes from its repressive influence and induction of hypertrophy.

761 citations

Journal ArticleDOI
TL;DR: Using miRNA inhibitors, it is demonstrated that certain cancer cell lines require high activity of miR‐221&222 to maintain low p27Kip1 levels and continuous proliferation, and Interestingly, high levels of MiRNAs appear in glioblastomas and correlate with low levels of p27kip1 protein.
Abstract: MicroRNAs (miRNAs) are potent post-transcriptional regulators of protein coding genes. Patterns of misexpression of miRNAs in cancer suggest key functions of miRNAs in tumorigenesis. However, current bioinformatics tools do not entirely support the identification and characterization of the mode of action of such miRNAs. Here, we used a novel functional genetic approach and identified miR-221 and miR-222 (miR-221&222) as potent regulators of p27(Kip1), a cell cycle inhibitor and tumor suppressor. Using miRNA inhibitors, we demonstrate that certain cancer cell lines require high activity of miR-221&222 to maintain low p27(Kip1) levels and continuous proliferation. Interestingly, high levels of miR-221&222 appear in glioblastomas and correlate with low levels of p27(Kip1) protein. Thus, deregulated expression of miR-221&222 promotes cancerous growth by inhibiting the expression of p27(Kip1).

757 citations

References
More filters
Journal ArticleDOI
23 Jan 2004-Cell
TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.

32,946 citations

Journal ArticleDOI
03 Dec 1993-Cell
TL;DR: Two small lin-4 transcripts of approximately 22 and 61 nt were identified in C. elegans and found to contain sequences complementary to a repeated sequence element in the 3' untranslated region (UTR) of lin-14 mRNA, suggesting that lin- 4 regulates lin- 14 translation via an antisense RNA-RNA interaction.

11,932 citations

Journal ArticleDOI
09 Jun 2005-Nature
TL;DR: A new, bead-based flow cytometric miRNA expression profiling method is used to present a systematic expression analysis of 217 mammalian miRNAs from 334 samples, including multiple human cancers, and finds the miRNA profiles are surprisingly informative, reflecting the developmental lineage and differentiation state of the tumours.
Abstract: Recent work has revealed the existence of a class of small non-coding RNA species, known as microRNAs (miRNAs), which have critical functions across various biological processes. Here we use a new, bead-based flow cytometric miRNA expression profiling method to present a systematic expression analysis of 217 mammalian miRNAs from 334 samples, including multiple human cancers. The miRNA profiles are surprisingly informative, reflecting the developmental lineage and differentiation state of the tumours. We observe a general downregulation of miRNAs in tumours compared with normal tissues. Furthermore, we were able to successfully classify poorly differentiated tumours using miRNA expression profiles, whereas messenger RNA profiles were highly inaccurate when applied to the same samples. These findings highlight the potential of miRNA profiling in cancer diagnosis.

9,470 citations

Journal ArticleDOI
26 Dec 2003-Cell
TL;DR: The predicted regulatory targets of mammalian miRNAs were enriched for genes involved in transcriptional regulation but also encompassed an unexpectedly broad range of other functions.

5,246 citations

Journal ArticleDOI
25 Sep 2003-Nature
TL;DR: The two RNase III proteins, Drosha and Dicer, may collaborate in the stepwise processing of miRNAs, and have key roles in miRNA-mediated gene regulation in processes such as development and differentiation.
Abstract: Hundreds of small RNAs of approximately 22 nucleotides, collectively named microRNAs (miRNAs), have been discovered recently in animals and plants. Although their functions are being unravelled, their mechanism of biogenesis remains poorly understood. miRNAs are transcribed as long primary transcripts (pri-miRNAs) whose maturation occurs through sequential processing events: the nuclear processing of the pri-miRNAs into stem-loop precursors of approximately 70 nucleotides (pre-miRNAs), and the cytoplasmic processing of pre-miRNAs into mature miRNAs. Dicer, a member of the RNase III superfamily of bidentate nucleases, mediates the latter step, whereas the processing enzyme for the former step is unknown. Here we identify another RNase III, human Drosha, as the core nuclease that executes the initiation step of miRNA processing in the nucleus. Immunopurified Drosha cleaved pri-miRNA to release pre-miRNA in vitro. Furthermore, RNA interference of Drosha resulted in the strong accumulation of pri-miRNA and the reduction of pre-miRNA and mature miRNA in vivo. Thus, the two RNase III proteins, Drosha and Dicer, may collaborate in the stepwise processing of miRNAs, and have key roles in miRNA-mediated gene regulation in processes such as development and differentiation.

5,191 citations