scispace - formally typeset
Search or ask a question
Journal Article

Oncomirs : microRNAs with a role in cancer

01 Jan 2007-Nature Reviews Genetics (Nature Publishing Group)-
TL;DR: I MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators as discussed by the authors, and have been shown to repress the expression of important cancer-related genes and might prove useful in the diagnosis and treatment of cancer.
Abstract: I MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators. They regulate diverse biological processes, and bioinformatic data indicates that each miRNA can control hundreds of gene targets, underscoring the potential influence of miRNAs on almost every genetic pathway. Recent evidence has shown that miRNA mutations or mis-expression correlate with various human cancers and indicates that miRNAs can function as tumour suppressors and oncogenes. miRNAs have been shown to repress the expression of important cancer-related genes and might prove useful in the diagnosis and treatment of cancer.
Citations
More filters
Journal ArticleDOI
TL;DR: The results suggest that the autoregulation between E2F1–3 and miR-20a is important for preventing an abnormal accumulation of E 2F1-3 and may play a role in the regulation of cellular proliferation and apoptosis.

615 citations

Journal ArticleDOI
TL;DR: Examination of expression profiles of 148 miRNAs in a panel of 18 oral squamous cell carcinoma cell lines and the immortalized oral keratinocyte line RT7 showed that miR-137 andmiR-193a are tumor suppressor miRNAAs epigenetically silenced during oral carcinogenesis.
Abstract: In the last few years, microRNAs (miRNA) have started a revolution in molecular biology and emerged as key players in the carcinogenesis They have been identified in various tumor types, showing that different sets of miRNAs are usually deregulated in different cancers To identify the miRNA signature that was specific for oral squamous cell carcinoma (OSCC), we first examined expression profiles of 148 miRNAs in a panel of 18 OSCC cell lines and the immortalized oral keratinocyte line RT7 as a control Compared with RT7, the expression of 54 miRNAs (365%) was frequently down-regulated in OSCC lines ( miR-34b, miR-137, miR-193a , and miR-203 ), located around CpG islands, to identify tumor-suppressive miRNAs silenced through aberrant DNA methylation The expression of those four genes was restored by treatment with 5-aza-2′-deoxycytidine in OSCC cells lacking their expression In addition, expression levels of the four miRNAs were inversely correlated with their DNA methylation status in the OSCC lines In primary tumors of OSCC with paired normal oral mucosa, down-regulation of miRNA expression through tumor-specific hypermethylation was more frequently observed for miR-137 and miR-193a than for miR-34b and miR-203 Moreover, the ectopic transfection of miR-137 or miR-193a into OSCC lines lacking their expressions significantly reduced cell growth, with down-regulation of the translation of cyclin-dependent kinase 6 or E2F transcription factor 6, respectively Taken together, our results clearly show that miR-137 and miR-193a are tumor suppressor miRNAs epigenetically silenced during oral carcinogenesis [Cancer Res 2008;68(7):2094–105]

599 citations

Journal ArticleDOI
TL;DR: It is proposed that let-7 regulates 'stemness' by repressing self-renewal and promoting differentiation in both normal development and cancer.

591 citations

Journal ArticleDOI
TL;DR: A pleiotropic role of miR-200s is suggested in promoting metastatic colonization by influencing E-cadherin–dependent epithelial traits and Sec23a-mediated tumor cell secretome.
Abstract: Although the role of miR-200s in regulating E-cadherin expression and epithelial-to-mesenchymal transition is well established, their influence on metastatic colonization remains controversial. Here we have used clinical and experimental models of breast cancer metastasis to discover a pro-metastatic role of miR-200s that goes beyond their regulation of E-cadherin and epithelial phenotype. Overexpression of miR-200s is associated with increased risk of metastasis in breast cancer and promotes metastatic colonization in mouse models, phenotypes that cannot be recapitulated by E-cadherin expression alone. Genomic and proteomic analyses revealed global shifts in gene expression upon miR-200 overexpression toward that of highly metastatic cells. miR-200s promote metastatic colonization partly through direct targeting of Sec23a, which mediates secretion of metastasis-suppressive proteins, including Igfbp4 and Tinagl1, as validated by functional and clinical correlation studies. Overall, these findings suggest a pleiotropic role of miR-200s in promoting metastatic colonization by influencing E-cadherin-dependent epithelial traits and Sec23a-mediated tumor cell secretome.

590 citations

Journal ArticleDOI
21 Sep 2007-Science
TL;DR: It is shown here that translation initiation, specifically the 5′ cap recognition process, is repressed by endogenous let-7 miRNAs within the first 15 minutes of mRNA exposure to the extract when no destabilization of the transcript is observed.
Abstract: MicroRNAs (miRNAs) play an important role in gene regulatory networks in animals. Yet, the mechanistic details of their function in translation inhibition or messenger RNA (mRNA) destabilization remain controversial. To directly examine the earliest events in this process, we have developed an in vitro translation system using mouse Krebs-2 ascites cell-free extract that exhibits an authentic miRNA response. We show here that translation initiation, specifically the 5' cap recognition process, is repressed by endogenous let-7 miRNAs within the first 15 minutes of mRNA exposure to the extract when no destabilization of the transcript is observed. Our results indicate that inhibition of translation initiation is the earliest molecular event effected by miRNAs. Other mechanisms, such as mRNA degradation, may subsequently consolidate mRNA silencing.

588 citations

References
More filters
Journal ArticleDOI
23 Jan 2004-Cell
TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.

32,946 citations

Journal ArticleDOI
03 Dec 1993-Cell
TL;DR: Two small lin-4 transcripts of approximately 22 and 61 nt were identified in C. elegans and found to contain sequences complementary to a repeated sequence element in the 3' untranslated region (UTR) of lin-14 mRNA, suggesting that lin- 4 regulates lin- 14 translation via an antisense RNA-RNA interaction.

11,932 citations

Journal ArticleDOI
09 Jun 2005-Nature
TL;DR: A new, bead-based flow cytometric miRNA expression profiling method is used to present a systematic expression analysis of 217 mammalian miRNAs from 334 samples, including multiple human cancers, and finds the miRNA profiles are surprisingly informative, reflecting the developmental lineage and differentiation state of the tumours.
Abstract: Recent work has revealed the existence of a class of small non-coding RNA species, known as microRNAs (miRNAs), which have critical functions across various biological processes. Here we use a new, bead-based flow cytometric miRNA expression profiling method to present a systematic expression analysis of 217 mammalian miRNAs from 334 samples, including multiple human cancers. The miRNA profiles are surprisingly informative, reflecting the developmental lineage and differentiation state of the tumours. We observe a general downregulation of miRNAs in tumours compared with normal tissues. Furthermore, we were able to successfully classify poorly differentiated tumours using miRNA expression profiles, whereas messenger RNA profiles were highly inaccurate when applied to the same samples. These findings highlight the potential of miRNA profiling in cancer diagnosis.

9,470 citations

Journal ArticleDOI
26 Dec 2003-Cell
TL;DR: The predicted regulatory targets of mammalian miRNAs were enriched for genes involved in transcriptional regulation but also encompassed an unexpectedly broad range of other functions.

5,246 citations

Journal ArticleDOI
25 Sep 2003-Nature
TL;DR: The two RNase III proteins, Drosha and Dicer, may collaborate in the stepwise processing of miRNAs, and have key roles in miRNA-mediated gene regulation in processes such as development and differentiation.
Abstract: Hundreds of small RNAs of approximately 22 nucleotides, collectively named microRNAs (miRNAs), have been discovered recently in animals and plants. Although their functions are being unravelled, their mechanism of biogenesis remains poorly understood. miRNAs are transcribed as long primary transcripts (pri-miRNAs) whose maturation occurs through sequential processing events: the nuclear processing of the pri-miRNAs into stem-loop precursors of approximately 70 nucleotides (pre-miRNAs), and the cytoplasmic processing of pre-miRNAs into mature miRNAs. Dicer, a member of the RNase III superfamily of bidentate nucleases, mediates the latter step, whereas the processing enzyme for the former step is unknown. Here we identify another RNase III, human Drosha, as the core nuclease that executes the initiation step of miRNA processing in the nucleus. Immunopurified Drosha cleaved pri-miRNA to release pre-miRNA in vitro. Furthermore, RNA interference of Drosha resulted in the strong accumulation of pri-miRNA and the reduction of pre-miRNA and mature miRNA in vivo. Thus, the two RNase III proteins, Drosha and Dicer, may collaborate in the stepwise processing of miRNAs, and have key roles in miRNA-mediated gene regulation in processes such as development and differentiation.

5,191 citations