scispace - formally typeset
Search or ask a question
Journal Article

Oncomirs : microRNAs with a role in cancer

01 Jan 2007-Nature Reviews Genetics (Nature Publishing Group)-
TL;DR: I MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators as discussed by the authors, and have been shown to repress the expression of important cancer-related genes and might prove useful in the diagnosis and treatment of cancer.
Abstract: I MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators. They regulate diverse biological processes, and bioinformatic data indicates that each miRNA can control hundreds of gene targets, underscoring the potential influence of miRNAs on almost every genetic pathway. Recent evidence has shown that miRNA mutations or mis-expression correlate with various human cancers and indicates that miRNAs can function as tumour suppressors and oncogenes. miRNAs have been shown to repress the expression of important cancer-related genes and might prove useful in the diagnosis and treatment of cancer.
Citations
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that specific alterations in miRNA expression distinguish AMLs with common translocations and imply that the deregulation of specific miRNAs may play a role in the development of leukemia with these associated genetic rearrangements.
Abstract: MicroRNAs (miRNAs) are postulated to be important regulators in cancers. Here, we report a genome-wide miRNA expression analysis in 52 acute myeloid leukemia (AML) samples with common translocations, including t(8;21)/AML1(RUNX1)-ETO(RUNX1T1), inv(16)/CBFB-MYH11, t(15;17)/PML-RARA, and MLL rearrangements. Distinct miRNA expression patterns were observed for t(15;17), MLL rearrangements, and core-binding factor (CBF) AMLs including both t(8;21) and inv(16) samples. Expression signatures of a minimum of two (i.e., miR-126/126*), three (i.e., miR-224, miR-368, and miR-382), and seven (miR-17-5p and miR-20a, plus the aforementioned five) miRNAs could accurately discriminate CBF, t(15;17), and MLL-rearrangement AMLs, respectively, from each other. We further showed that the elevated expression of miR-126/126* in CBF AMLs was associated with promoter demethylation but not with amplification or mutation of the genomic locus. Our gain- and loss-of-function experiments showed that miR-126/126* inhibited apoptosis and increased the viability of AML cells and enhanced the colony-forming ability of mouse normal bone marrow progenitor cells alone and particularly, in cooperation with AML1-ETO, likely through targeting Polo-like kinase 2 (PLK2), a tumor suppressor. Our results demonstrate that specific alterations in miRNA expression distinguish AMLs with common translocations and imply that the deregulation of specific miRNAs may play a role in the development of leukemia with these associated genetic rearrangements.

452 citations

Journal ArticleDOI
TL;DR: The purpose of the present study was to determine the miRNA expression profile of gastric cancer.
Abstract: Background and Aim: MicroRNAs (miRNAs) play important roles in carcinogenesis. The global miRNA expression profile of gastric cancer has not been reported. The purpose of the present study was to determine the miRNA expression profile of gastric cancer. Methods: Total RNA were first extracted from primary gastric cancer tissues and adjacent non-tumorous tissues and then small isolated RNAs (< 300 nt) were 3′-extended with a poly(A) tail. Hybridization was carried out on a μParaflo™ microfluidic chip (LC Sciences, Houston, TX, USA). After hybridization detection by fluorescence labeling using tag-specific Cy3 and Cy5 dyes, hybridization images were collected using a laser scanner and digitized using Array-Pro image analysis software (Media Cybernetics, Silver Spring, MD, USA). To validate the results and investigate the biological meaning of differential expressed miRNAs, immunohistochemistry was used to detect the differential expression of target genes. Results: The most highly expressed miRNAs in non-tumorous tissues were miR-768-3p, miR-139-5p, miR-378, miR-31, miR-195, miR-497 and miR-133b. Three of them, miR-139-5p, miR-497 and miR-768-3p, were first found in non-tumorous tissues. The most highly expressed miRNAs in gastric cancer tissues were miR-20b, miR-20a, miR-17, miR-106a, miR-18a, miR-21, miR-106b, miR-18b, miR-421, miR-340*, miR-19a and miR-658. Among them, miR-340*, miR-421 and miR-658 were first found highly expressed in cancer cells. The expression of some target genes (such as Rb and PTEN) in cancer tissues was found to be decreased. Conclusion: To our knowledge, this is the first report about these miRNAs associated with gastric cancer. This new information may suggest the potential roles of these miRNAs in the diagnosis of gastric cancer.

452 citations

Journal ArticleDOI
TL;DR: It is shown that the combined suppression of miR-21 and NPC-S-TRAIL leads to a synergistic increase in caspase activity and significantly decreased cell viability in human glioma cells in vitro.
Abstract: Despite the development of new glioma therapies that allow for tumor-targeted in situ delivery of cytotoxic drugs, tumor resistance to apoptosis remains a key impediment to effective treatment. Mounting evidence indicates that microRNAs (miRNA) might play a fundamental role in tumorigenesis, controlling cell proliferation and apoptosis. In gliomas, microRNA-21 (miR-21) levels have been reported to be elevated and their knockdown is associated with increased apoptotic activity. We hypothesized that suppression of miR-21 might sensitize gliomas for cytotoxic tumor therapy. With the use of locked nucleic acid (LNA)-antimiR-21 oligonucleotides, bimodal imaging vectors, and neural precursor cells (NPC) expressing a secretable variant of the cytotoxic agent tumor necrosis factor-related apoptosis inducing ligand (S-TRAIL), we show that the combined suppression of miR-21 and NPC-S-TRAIL leads to a synergistic increase in caspase activity and significantly decreased cell viability in human glioma cells in vitro. This phenomenon persists in vivo, as we observed complete eradication of LNA-antimiR-21-treated gliomas subjected to the presence of NPC-S-TRAIL in the murine brain. Our results reveal the efficacy of miR-21 antagonism in murine glioma models and implicate miR-21 as a target for therapeutic intervention. Furthermore, our findings provide the basis for developing combination therapies using miRNA modulation and cytotoxic tumor therapies.

452 citations

Journal ArticleDOI
TL;DR: Newly uncovered cellular and molecular mechanisms of the sources and stability of circulating miRNAs are presented, revealing their great potential as a class of highly specific and sensitive biomarkers for tumor classification and prognostication.
Abstract: Specific and sensitive non-invasive biomarkers for the detection of human epithelial malignancies are urgently required to reduce the worldwide morbidity and mortality caused by cancer. MicroRNAs (miRNAs) are 19-24 nt noncoding RNAs that are frequently dysregulated in cancer and have shown great promise as tissue-based markers for cancer classification. Once thought to be unstable RNA molecules, miRNAs are now shown to be stably expressed in serum, plasma, urine, saliva, and other body fluids. Moreover, the unique expression patterns of these circulating miRNAs are correlated with certain human diseases, including various types of cancer. Therefore, tumor-derived miRNAs in serum or plasma are emerging as novel blood-based fingerprints for the detection of human cancers, especially at an early stage. This review presented newly uncovered cellular and molecular mechanisms of the sources and stability of circulating miRNAs, revealing their great potential as a class of highly specific and sensitive biomarkers for tumor classification and prognostication. Meanwhile, this review also addressed certain critical issues that hinder the wide application of this new approach. Some potential challenges for the transition of circulating miRNAs from a research setting to a clinical application were also highlighted, with a future perspective of the incorporation of circulating miRNAs in the field of clinical oncology, especially their great potential from diagnostic to prognostic and predictive applications.

451 citations

Journal ArticleDOI
TL;DR: Members of the let-7 family of microRNAs were significantly downregulated in primary melanomas as compared with benign nevi, suggestive for a possible role of these molecules as tumor suppressors in malignant melanoma.
Abstract: A microRNA expression screen was performed analyzing 157 different microRNAs in laser-microdissected tissues from benign melanocytic nevi (n = 10) and primary malignant melanomas (n = 10), using quantitative real-time PCR. Differential expression was found for 72 microRNAs. Members of the let-7 family of microRNAs were significantly downregulated in primary melanomas as compared with benign nevi, suggestive for a possible role of these molecules as tumor suppressors in malignant melanoma. Interestingly, similar findings had been described for lung and colon cancer. Overexpression of let-7b in melanoma cells in vitro downregulated the expression of cyclins D1, D3, and A, and cyclin-dependent kinase (Cdk) 4, all of which had been described to play a role in melanoma development. The effect of let-7b on protein expression was due to targeting of 3'-untranslated regions (3'UTRs) of individual mRNAs, as exemplified by reporter gene analyses for cyclin D1. In line with its downmodulating effects on cell cycle regulators, let-7b inhibited cell cycle progression and anchorage-independent growth of melanoma cells. Taken together, these findings not only point to new regulatory mechanisms of early melanoma development, but also may open avenues for future targeted therapies of this tumor.

449 citations

References
More filters
Journal ArticleDOI
23 Jan 2004-Cell
TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.

32,946 citations

Journal ArticleDOI
03 Dec 1993-Cell
TL;DR: Two small lin-4 transcripts of approximately 22 and 61 nt were identified in C. elegans and found to contain sequences complementary to a repeated sequence element in the 3' untranslated region (UTR) of lin-14 mRNA, suggesting that lin- 4 regulates lin- 14 translation via an antisense RNA-RNA interaction.

11,932 citations

Journal ArticleDOI
09 Jun 2005-Nature
TL;DR: A new, bead-based flow cytometric miRNA expression profiling method is used to present a systematic expression analysis of 217 mammalian miRNAs from 334 samples, including multiple human cancers, and finds the miRNA profiles are surprisingly informative, reflecting the developmental lineage and differentiation state of the tumours.
Abstract: Recent work has revealed the existence of a class of small non-coding RNA species, known as microRNAs (miRNAs), which have critical functions across various biological processes. Here we use a new, bead-based flow cytometric miRNA expression profiling method to present a systematic expression analysis of 217 mammalian miRNAs from 334 samples, including multiple human cancers. The miRNA profiles are surprisingly informative, reflecting the developmental lineage and differentiation state of the tumours. We observe a general downregulation of miRNAs in tumours compared with normal tissues. Furthermore, we were able to successfully classify poorly differentiated tumours using miRNA expression profiles, whereas messenger RNA profiles were highly inaccurate when applied to the same samples. These findings highlight the potential of miRNA profiling in cancer diagnosis.

9,470 citations

Journal ArticleDOI
26 Dec 2003-Cell
TL;DR: The predicted regulatory targets of mammalian miRNAs were enriched for genes involved in transcriptional regulation but also encompassed an unexpectedly broad range of other functions.

5,246 citations

Journal ArticleDOI
25 Sep 2003-Nature
TL;DR: The two RNase III proteins, Drosha and Dicer, may collaborate in the stepwise processing of miRNAs, and have key roles in miRNA-mediated gene regulation in processes such as development and differentiation.
Abstract: Hundreds of small RNAs of approximately 22 nucleotides, collectively named microRNAs (miRNAs), have been discovered recently in animals and plants. Although their functions are being unravelled, their mechanism of biogenesis remains poorly understood. miRNAs are transcribed as long primary transcripts (pri-miRNAs) whose maturation occurs through sequential processing events: the nuclear processing of the pri-miRNAs into stem-loop precursors of approximately 70 nucleotides (pre-miRNAs), and the cytoplasmic processing of pre-miRNAs into mature miRNAs. Dicer, a member of the RNase III superfamily of bidentate nucleases, mediates the latter step, whereas the processing enzyme for the former step is unknown. Here we identify another RNase III, human Drosha, as the core nuclease that executes the initiation step of miRNA processing in the nucleus. Immunopurified Drosha cleaved pri-miRNA to release pre-miRNA in vitro. Furthermore, RNA interference of Drosha resulted in the strong accumulation of pri-miRNA and the reduction of pre-miRNA and mature miRNA in vivo. Thus, the two RNase III proteins, Drosha and Dicer, may collaborate in the stepwise processing of miRNAs, and have key roles in miRNA-mediated gene regulation in processes such as development and differentiation.

5,191 citations