scispace - formally typeset
Search or ask a question
Journal Article

Oncomirs : microRNAs with a role in cancer

01 Jan 2007-Nature Reviews Genetics (Nature Publishing Group)-
TL;DR: I MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators as discussed by the authors, and have been shown to repress the expression of important cancer-related genes and might prove useful in the diagnosis and treatment of cancer.
Abstract: I MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators. They regulate diverse biological processes, and bioinformatic data indicates that each miRNA can control hundreds of gene targets, underscoring the potential influence of miRNAs on almost every genetic pathway. Recent evidence has shown that miRNA mutations or mis-expression correlate with various human cancers and indicates that miRNAs can function as tumour suppressors and oncogenes. miRNAs have been shown to repress the expression of important cancer-related genes and might prove useful in the diagnosis and treatment of cancer.
Citations
More filters
Journal ArticleDOI
TL;DR: The study shows that high miR-21 expression was associated with features of aggressive disease, including high tumor grade, negative hormone receptor status, and ductal carcinoma, and supports the notion that mi R-21 is an onco-microRNA for breast cancer.
Abstract: MicroRNA-21 (miR-21) is considered an onco-microRNA given its abilities to suppress the actions of several tumor suppressor genes and to promote tumor cell growth, invasion and metastasis. Recently, transforming growth factor-beta (TGF-β) is found to up-regulate the expression of miR-21, and elevated miR-21 expression is seen frequently in breast cancer. To evaluate the effect of miR-21 on disease progression and its association with TGF-β, we analyzed miR-21 expression in breast cancer. Fresh tumor samples were collected during surgery from 344 patients diagnosed with primary breast cancer. The expression of miR-21 in tumor samples was measured with a TaqMan® microRNA assay using U6 as reference. Levels of miR-21 expression by disease stage, tumor grade, histology, hormone receptor status and lymph node involvement were compared. Cox proportional hazards regression analysis was performed to assess the association of miR-21 expression with disease-free and overall survival. The study results showed that the expression of miR-21 was detected in all tumor samples with substantial variation. High miR-21 expression was associated with features of aggressive disease, including high tumor grade, negative hormone receptor status, and ductal carcinoma. High miR-21 was also positively correlated with TGF-β1. No associations were found between patient survival and miR-21 expression among all patients, but high miR-21 was associated with poor disease-free survival in early stage patients (HR = 2.08, 95% CI: 1.08–4.00) despite no value for prognosis. The study supports the notion that miR-21 is an onco-microRNA for breast cancer. Elevated miR-21 expression may facilitate tumor progression, and TGF-β may up-regulate its expression.

283 citations

Journal ArticleDOI
TL;DR: A comprehensive analysis of miRNA genes found that about half of these genes are associated with CpG islands and thus represent candidate targets of the DNA methylation machinery, and indicated that miRNA gene methylation is detectable at high frequencies, both in normal and malignant cells.
Abstract: MicroRNAs (miRNAs) are small RNA molecules that control gene expression by inhibition of protein translation or degradation of cognate target mRNAs. Eventhough strict Even though strict developmental and tissue-specific regulation appears to be critical for miRNA function, very little is known about the mechanisms governing miRNA gene expression. Several recent studies have shown that miRNA genes can regulated DNA methylation and other epigenetic mechanisms. The observation of altered miRNA gene methylation patterns in human cancers also suggested that miRNA gene methylation is functional relevant for tumorigenesis. We have now performed a comprehensive analysis of miRNA genes and found that about half of these genes are associated with CpG islands and thus represent candidate targets of the DNA methylation machinery An expanded analysis of several miRNA-associated CpG islands in five cell lines indicated that miRNA gene methylation is detectable at high frequencies, both in normal and malignant cells. Possible explanations for this phenomenon include the specific structure of miRNA genes and/or their requirement for strict expression regulation.

282 citations

01 Jan 2008
TL;DR: The successful evaluation of the Megaplex reverse transcription format of the stem-loop primer-based real-time quantitative polymerase chain reaction (RT-qPCR) approach to quantify miRNA expression is presented, ensuring high-throughput detection.

282 citations

Journal ArticleDOI
TL;DR: It is reported that EGR1 is regulated by microRNA (miR)-183 in multiple tumor types including synovial sarcoma, rhabdomyosarcoma (RMS), and colon cancer, and deregulation of this fundamental miRNA regulatory network may be central to many tumor types.
Abstract: The transcription factor EGR1 is a tumor suppressor gene that is downregulated in many cancer types. Clinically, loss of EGR1 translates to increased tumor transformation and subsequent patient morbidity and mortality. In synovial sarcoma, the SS18-SSX fusion protein represses EGR1 expression through a direct association with the EGR1 promoter. However, the mechanism through which EGR1 becomes downregulated in other tumor types is unclear. Here, we report that EGR1 is regulated by microRNA (miR)-183 in multiple tumor types including synovial sarcoma, rhabdomyosarcoma (RMS), and colon cancer. Using an integrative network analysis, we identified that miR-183 is significantly overexpressed in these tumor types as well as in corresponding tumor cell lines. Bioinformatic analyses suggested that miR-183 could target EGR1 mRNA and this specific interaction was validated in vitro. miR-183 knockdown in synovial sarcoma, RMS, and colon cancer cell lines revealed deregulation of a miRNA network composed of miR-183-EGR1-PTEN in these tumors. Integrated miRNA- and mRNA-based genomic analyses indicated that miR-183 is an important contributor to cell migration in these tumor types and this result was functionally validated to be occurring via an EGR1-based mechanism. In conclusion, our findings have significant implications in the mechanisms underlying EGR1 regulation in cancers. miR-183 has a potential oncogenic role through the regulation of 2 tumor suppressor genes, EGR1 and PTEN, and the deregulation of this fundamental miRNA regulatory network may be central to many tumor types.

280 citations

Journal ArticleDOI
TL;DR: It is concluded that miR-200 family may serve as novel targets for the therapy of multiple types of cancer.
Abstract: // Brock Humphries 1, 2 , Chengfeng Yang 1, 2, 3 1 Department of Physiology, Michigan State University, East Lansing, MI 48824, USA 2 Cellular and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI 48824, USA 3 Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA Correspondence to: Chengfeng Yang, e-mail: yangcf@msu.edu Keywords: microRNA, miR-200, cancer initiation, cancer metastasis, cancer therapeutic target Received: November 14, 2014 Accepted: January 06, 2015 Published: January 30, 2015 ABSTRACT MicroRNAs (miRNAs) are a large family of small non-coding RNAs that negatively regulate protein-coding gene expression post-transcriptionally via base pairing between the 5′ seed region of a miRNA and the 3′ untranslated region (3′UTR) of a messenger RNA (mRNA). Recent evidence has supported the critical role that miRNAs play in many diseases including cancer. The miR-200 family consisting of 5 members (miR-200a, -200b, -200c, -141, -429) is an emerging miRNA family that has been shown to play crucial roles in cancer initiation and metastasis, and potentially be important for the diagnosis and treatment of cancer. While miR-200s were found to be critically involved in the metastatic colonization to the lungs in mouse mammary xenograft tumor models, a large number of studies demonstrated their strong suppressive effects on cell transformation, cancer cell proliferation, migration, invasion, tumor growth and metastasis. This review aims to discuss research findings about the role of the miR-200 family in cancer initiation, each step of cancer metastatic cascade, cancer diagnosis and treatment. A comprehensive summary of currently validated miR-200 targets is also presented. It is concluded that miR-200 family may serve as novel targets for the therapy of multiple types of cancer.

279 citations

References
More filters
Journal ArticleDOI
23 Jan 2004-Cell
TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.

32,946 citations

Journal ArticleDOI
03 Dec 1993-Cell
TL;DR: Two small lin-4 transcripts of approximately 22 and 61 nt were identified in C. elegans and found to contain sequences complementary to a repeated sequence element in the 3' untranslated region (UTR) of lin-14 mRNA, suggesting that lin- 4 regulates lin- 14 translation via an antisense RNA-RNA interaction.

11,932 citations

Journal ArticleDOI
09 Jun 2005-Nature
TL;DR: A new, bead-based flow cytometric miRNA expression profiling method is used to present a systematic expression analysis of 217 mammalian miRNAs from 334 samples, including multiple human cancers, and finds the miRNA profiles are surprisingly informative, reflecting the developmental lineage and differentiation state of the tumours.
Abstract: Recent work has revealed the existence of a class of small non-coding RNA species, known as microRNAs (miRNAs), which have critical functions across various biological processes. Here we use a new, bead-based flow cytometric miRNA expression profiling method to present a systematic expression analysis of 217 mammalian miRNAs from 334 samples, including multiple human cancers. The miRNA profiles are surprisingly informative, reflecting the developmental lineage and differentiation state of the tumours. We observe a general downregulation of miRNAs in tumours compared with normal tissues. Furthermore, we were able to successfully classify poorly differentiated tumours using miRNA expression profiles, whereas messenger RNA profiles were highly inaccurate when applied to the same samples. These findings highlight the potential of miRNA profiling in cancer diagnosis.

9,470 citations

Journal ArticleDOI
26 Dec 2003-Cell
TL;DR: The predicted regulatory targets of mammalian miRNAs were enriched for genes involved in transcriptional regulation but also encompassed an unexpectedly broad range of other functions.

5,246 citations

Journal ArticleDOI
25 Sep 2003-Nature
TL;DR: The two RNase III proteins, Drosha and Dicer, may collaborate in the stepwise processing of miRNAs, and have key roles in miRNA-mediated gene regulation in processes such as development and differentiation.
Abstract: Hundreds of small RNAs of approximately 22 nucleotides, collectively named microRNAs (miRNAs), have been discovered recently in animals and plants. Although their functions are being unravelled, their mechanism of biogenesis remains poorly understood. miRNAs are transcribed as long primary transcripts (pri-miRNAs) whose maturation occurs through sequential processing events: the nuclear processing of the pri-miRNAs into stem-loop precursors of approximately 70 nucleotides (pre-miRNAs), and the cytoplasmic processing of pre-miRNAs into mature miRNAs. Dicer, a member of the RNase III superfamily of bidentate nucleases, mediates the latter step, whereas the processing enzyme for the former step is unknown. Here we identify another RNase III, human Drosha, as the core nuclease that executes the initiation step of miRNA processing in the nucleus. Immunopurified Drosha cleaved pri-miRNA to release pre-miRNA in vitro. Furthermore, RNA interference of Drosha resulted in the strong accumulation of pri-miRNA and the reduction of pre-miRNA and mature miRNA in vivo. Thus, the two RNase III proteins, Drosha and Dicer, may collaborate in the stepwise processing of miRNAs, and have key roles in miRNA-mediated gene regulation in processes such as development and differentiation.

5,191 citations