scispace - formally typeset
Search or ask a question
Journal Article

Oncomirs : microRNAs with a role in cancer

01 Jan 2007-Nature Reviews Genetics (Nature Publishing Group)-
TL;DR: I MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators as discussed by the authors, and have been shown to repress the expression of important cancer-related genes and might prove useful in the diagnosis and treatment of cancer.
Abstract: I MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators. They regulate diverse biological processes, and bioinformatic data indicates that each miRNA can control hundreds of gene targets, underscoring the potential influence of miRNAs on almost every genetic pathway. Recent evidence has shown that miRNA mutations or mis-expression correlate with various human cancers and indicates that miRNAs can function as tumour suppressors and oncogenes. miRNAs have been shown to repress the expression of important cancer-related genes and might prove useful in the diagnosis and treatment of cancer.
Citations
More filters
Journal ArticleDOI
TL;DR: Plasma miRNAs provide reliable and noninvasive markers for CRC and miR-21 seems uniquely promising as a plasma biomarker for CRC, warrants study in larger cohorts.
Abstract: Objectives:The main objective of this study was to investigate the potential use of circulating microRNAs (miRNAs) as biomarkers of sporadic colorectal cancer (CRC).Background:CRC, a leading cause of death, is curable if detected early. There is an unmet need for an accurate, noninvasive biomarker o

254 citations

Journal ArticleDOI
TL;DR: The current knowledge in this area is reviewed, including evidence of miRNA involvement in cancer drug resistance, and many pro-apoptotic miRNAs target anti-APoptotic mRNAs or their positive regulators.

253 citations

Journal ArticleDOI
TL;DR: Methylation levels of three miRNA genes contributed to the formation of a field defect for gastric cancers, in addition to that of protein‐coding genes, and no difference was observed between intestinal and diffuse histological types.
Abstract: Accumulation of aberrant DNA methylation in normal-appearing gastric mucosae, mostly induced by H. pylori infection, is now known to be deeply involved in predisposition to gastric cancers (epigenetic field defect), and silencing of protein-coding genes has been analyzed so far. In this study, we aimed to clarify the involvement of microRNA (miRNA) gene silencing in the field defect. First, we selected three miRNA genes as methylation-silenced after analysis of six candidate "methylation-silenced" tumor-suppressor miRNA genes. Methylation levels of the three genes (miR-124a-1, miR-124a-2 and miR-124a-3) were quantified in 56 normal gastric mucosae of healthy volunteers (28 volunteers with H. pylori and 28 without), 45 noncancerous gastric mucosae of gastric cancer patients (29 patients with H. pylori and 16 without), and 28 gastric cancer tissues (13 intestinal and 15 diffuse types). Among the healthy volunteers, individuals with H. pylori had 7.8-13.1-fold higher methylation levels than those without (p < 0.001). Among individuals without H. pylori, noncancerous gastric mucosae of gastric cancer patients had 7.2-15.5-fold higher methylation levels than gastric mucosae of healthy volunteers (p < 0.005). Different from protein-coding genes, individuals with past H. pylori infection retained similar methylation levels to those with current infection. In cancer tissues, methylation levels were highly variable, and no difference was observed between intestinal and diffuse histological types. This strongly indicated that methylation-silencing of miRNA genes, in addition to that of protein-coding genes, contributed to the formation of a field defect for gastric cancers.

253 citations

01 Jan 2011
TL;DR: It is shown that miR-17-92 is a potent inhibitor of TGF-β signaling by functioning both upstream and downstream of pSMAD2, and triggers downregulation of multiple key effectors along the TGF -β signaling cascade as well as direct inhibition of T GF-β-responsive genes.
Abstract: The miR-17-92 microRNA cluster is often activated in cancer cells, but the identity of its targets remains elusive. Using SILAC and quantitative mass spectrometry, we examined the effects of activation of the miR-17-92 cluster on global protein expression in neuroblastoma (NB) cells. Our results reveal cooperation between individual miR-17-92 miRNAs and implicate miR-17-92 in multiple hallmarks of cancer, including proliferation and cell adhesion. Most importantly, we show that miR-17-92 is a potent inhibitor of TGF-β signaling. By functioning both upstream and downstream of pSMAD2, miR-17-92 activation triggers downregulation of multiple key effectors along the TGF-β signaling cascade as well as direct inhibition of TGF-β-responsive genes.

252 citations

Journal ArticleDOI
TL;DR: There was a non-significant trend for high expression levels of the microRNAs, miR-21,MiR-210, MiR-221 and mi-222, to be associated with worse patient disease-free and overall survival.
Abstract: miRNAs are small, regulatory molecules approximately 21-24 nucleotides in length. They function at the post-transcriptional level by controlling the expression of more than 50% of human protein-coding genes and play an essential role in cell signaling pathways. The objective of the present study was to explore the expression profile of oncomiRs and tumor-suppressor miRs, and to define their possible correlations in triple-negative (ER, PR and Her2/neu) primary breast cancers. Forty-nine primary triple-negative breast cancer cases, along with 34 matched tumor-associated normal samples were investigated for the expression of 9 miRNAs using qPCR. Relationships between the expression of miR-10b, miR-21, miR-122a, miR-145, miR-205, miR-210, miR-221, miR-222 and miR-296 and the pathologic features of the tumors were examined, as were the influences of miR expression on patient overall and cancer-specific survival. miR-21, miR-210 and miR-221 were significantly overexpressed, whereas miR-10b, miR-145, miR-205, miR-122a were significantly underexpressed in the triple-negative primary breast cancers. Significant correlations among all of the studied miRs were scored both in the breast cancer and control tissue. Expression of miR-222 and miR-296 did not exhibit any significant difference between the breast cancer and normal tissue. There was a non-significant trend for high expression levels of the microRNAs, miR-21, miR-210, miR-221 and miR-222, to be associated with worse patient disease-free and overall survival. miR-21, miR-210 and miR-221 expression plays a significant role in triple- negative primary breast cancers.

251 citations

References
More filters
Journal ArticleDOI
23 Jan 2004-Cell
TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.

32,946 citations

Journal ArticleDOI
03 Dec 1993-Cell
TL;DR: Two small lin-4 transcripts of approximately 22 and 61 nt were identified in C. elegans and found to contain sequences complementary to a repeated sequence element in the 3' untranslated region (UTR) of lin-14 mRNA, suggesting that lin- 4 regulates lin- 14 translation via an antisense RNA-RNA interaction.

11,932 citations

Journal ArticleDOI
09 Jun 2005-Nature
TL;DR: A new, bead-based flow cytometric miRNA expression profiling method is used to present a systematic expression analysis of 217 mammalian miRNAs from 334 samples, including multiple human cancers, and finds the miRNA profiles are surprisingly informative, reflecting the developmental lineage and differentiation state of the tumours.
Abstract: Recent work has revealed the existence of a class of small non-coding RNA species, known as microRNAs (miRNAs), which have critical functions across various biological processes. Here we use a new, bead-based flow cytometric miRNA expression profiling method to present a systematic expression analysis of 217 mammalian miRNAs from 334 samples, including multiple human cancers. The miRNA profiles are surprisingly informative, reflecting the developmental lineage and differentiation state of the tumours. We observe a general downregulation of miRNAs in tumours compared with normal tissues. Furthermore, we were able to successfully classify poorly differentiated tumours using miRNA expression profiles, whereas messenger RNA profiles were highly inaccurate when applied to the same samples. These findings highlight the potential of miRNA profiling in cancer diagnosis.

9,470 citations

Journal ArticleDOI
26 Dec 2003-Cell
TL;DR: The predicted regulatory targets of mammalian miRNAs were enriched for genes involved in transcriptional regulation but also encompassed an unexpectedly broad range of other functions.

5,246 citations

Journal ArticleDOI
25 Sep 2003-Nature
TL;DR: The two RNase III proteins, Drosha and Dicer, may collaborate in the stepwise processing of miRNAs, and have key roles in miRNA-mediated gene regulation in processes such as development and differentiation.
Abstract: Hundreds of small RNAs of approximately 22 nucleotides, collectively named microRNAs (miRNAs), have been discovered recently in animals and plants. Although their functions are being unravelled, their mechanism of biogenesis remains poorly understood. miRNAs are transcribed as long primary transcripts (pri-miRNAs) whose maturation occurs through sequential processing events: the nuclear processing of the pri-miRNAs into stem-loop precursors of approximately 70 nucleotides (pre-miRNAs), and the cytoplasmic processing of pre-miRNAs into mature miRNAs. Dicer, a member of the RNase III superfamily of bidentate nucleases, mediates the latter step, whereas the processing enzyme for the former step is unknown. Here we identify another RNase III, human Drosha, as the core nuclease that executes the initiation step of miRNA processing in the nucleus. Immunopurified Drosha cleaved pri-miRNA to release pre-miRNA in vitro. Furthermore, RNA interference of Drosha resulted in the strong accumulation of pri-miRNA and the reduction of pre-miRNA and mature miRNA in vivo. Thus, the two RNase III proteins, Drosha and Dicer, may collaborate in the stepwise processing of miRNAs, and have key roles in miRNA-mediated gene regulation in processes such as development and differentiation.

5,191 citations