scispace - formally typeset
Search or ask a question
Journal Article

Oncomirs : microRNAs with a role in cancer

01 Jan 2007-Nature Reviews Genetics (Nature Publishing Group)-
TL;DR: I MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators as discussed by the authors, and have been shown to repress the expression of important cancer-related genes and might prove useful in the diagnosis and treatment of cancer.
Abstract: I MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators. They regulate diverse biological processes, and bioinformatic data indicates that each miRNA can control hundreds of gene targets, underscoring the potential influence of miRNAs on almost every genetic pathway. Recent evidence has shown that miRNA mutations or mis-expression correlate with various human cancers and indicates that miRNAs can function as tumour suppressors and oncogenes. miRNAs have been shown to repress the expression of important cancer-related genes and might prove useful in the diagnosis and treatment of cancer.
Citations
More filters
Journal ArticleDOI
TL;DR: The inverse correlation between COx-2 and miR-101 expression in colon cancer cell lines is reported and in vitro the direct inhibition of COX-2 mRNA translation mediated by mi R-101 is demonstrated.

245 citations

Journal ArticleDOI
TL;DR: The role of circRNAs as biomarkers, drug targets and therapeutic agents, as well as the relationship between dysregulated circ RNAs and human disease, is reviewed.
Abstract: Circular RNAs (circRNAs) are recently discovered new endogenous non-coding RNAs and an area of much research activity. In addition to their potential as major gene regulators, reports are linking heterogeneous circRNA groups with many different human disorders, especially cancer. In this review, we focus on the rapidly advancing field of circRNAs that play a part in human diseases. We list tools (eg, public databases) that scan genome spans of interest to identify known circRNAs; describe the relationship between dysregulated circRNAs and human disease, highlighting their specific roles; and consider the possible use of current and potential circRNA research applications in treating human diseases. Specifically, we review the role of circRNAs as biomarkers, drug targets and therapeutic agents.

245 citations

Journal ArticleDOI
TL;DR: The results of this study not only provide insights into alterations in the miRnomes of melanocytes and melanoma cell lines during melanoma progression but also present a large assortment of miRNAs to be analyzed for their potential as diagnostic markers or targets for therapies in the future.

245 citations

Journal ArticleDOI
TL;DR: In breast cancer cells, miR-301 attenuation decreased cell proliferation, clonogenicity, migration, invasion, tamoxifen resistance, tumor growth, and microvessel density, establishing an important oncogenic role for this gene.
Abstract: Several microRNAs have been implicated in human breast cancer but none to date have been validated or utilized consistently in clinical management. MicroRNA-301 (miR-301) overexpression has been implicated as a negative prognostic indicator in lymph node negative (LNN) invasive ductal breast cancer, but its potential functional impact has not been determined. Here we report that in breast cancer cells, miR-301 attenuation decreased cell proliferation, clonogenicity, migration, invasion, tamoxifen resistance, tumor growth, and microvessel density, establishing an important oncogenic role for this gene. Algorithm-based and experimental strategies identified FOXF2, BBC3, PTEN, and COL2A1 as candidate miR-301 targets, all of which were verified as direct targets through luciferase reporter assays. We noted that miR-301 is located in an intron of the SKA2 gene which is responsible for kinetochore assembly, and both genes were found to be coexpressed in primary breast cancer samples. In summary, our findings define miR-301 as a crucial oncogene in human breast cancer that acts through multiple pathways and mechanisms to promote nodal or distant relapses.

244 citations

Journal ArticleDOI
01 Apr 2010-PLOS ONE
TL;DR: In conclusion, miR-124-1 was hypermethylated in a tumour-specific manner, with a heterochromatic histone configuration, amongst haematological cancers, and was more frequently hyper methylated in NHL, and hence warrants further study.
Abstract: miR-124-1 is a tumour suppressor microRNA (miR). Epigenetic deregulation of miRs is implicated in carcinogenesis. Promoter DNA methylation and histone modification of miR-124-1 was studied in 5 normal marrow controls, 4 lymphoma, 8 multiple myeloma (MM) cell lines, 230 diagnostic primary samples of acute myeloid leukaemia (AML), acute lymphoblastic leukaemia (ALL), chronic myeloid leukaemia (CML), chronic lymphocytic leukaemia (CLL), MM, and non-Hodgkin's lymphoma (NHL), and 53 MM samples at stable disease or relapse. Promoter of miR-124-1 was unmethylated in normal controls but homozygously methylated in 4 of 4 lymphoma and 4 of 8 myeloma cell lines. Treatment of 5-Aza-2′-deoxycytidine led to miR-124-1 demethylation and re-expression of mature miR-124, which also associated with emergence of euchromatic trimethyl H3K4 and consequent downregulation of CDK6 in myeloma cells harboring homozygous miR-124-1 methylation. In primary samples at diagnosis, miR-124-1 methylation was absent in CML but detected in 2% each of MM at diagnosis and relapse/progression, 5% ALL, 15% AML, 14% CLL and 58.1% of NHL (p<0.001). Amongst lymphoid malignancies, miR-124-1 was preferentially methylated in NHL than MM, CLL or ALL. In primary lymphoma samples, miR-124-1 was preferentially hypermethylated in B- or NK/T-cell lymphomas and associated with reduced miR-124 expression. In conclusion, miR-124-1 was hypermethylated in a tumour-specific manner, with a heterochromatic histone configuration. Hypomethylation led to partial restoration of euchromatic histone code and miR re-expression. Infrequent miR-124-1 methylation detected in diagnostic and relapse MM samples showed an unimportant role in MM pathogenesis, despite frequent methylation found in cell lines. Amongst haematological cancers, miR-124-1 was more frequently hypermethylated in NHL, and hence warrants further study.

244 citations

References
More filters
Journal ArticleDOI
23 Jan 2004-Cell
TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.

32,946 citations

Journal ArticleDOI
03 Dec 1993-Cell
TL;DR: Two small lin-4 transcripts of approximately 22 and 61 nt were identified in C. elegans and found to contain sequences complementary to a repeated sequence element in the 3' untranslated region (UTR) of lin-14 mRNA, suggesting that lin- 4 regulates lin- 14 translation via an antisense RNA-RNA interaction.

11,932 citations

Journal ArticleDOI
09 Jun 2005-Nature
TL;DR: A new, bead-based flow cytometric miRNA expression profiling method is used to present a systematic expression analysis of 217 mammalian miRNAs from 334 samples, including multiple human cancers, and finds the miRNA profiles are surprisingly informative, reflecting the developmental lineage and differentiation state of the tumours.
Abstract: Recent work has revealed the existence of a class of small non-coding RNA species, known as microRNAs (miRNAs), which have critical functions across various biological processes. Here we use a new, bead-based flow cytometric miRNA expression profiling method to present a systematic expression analysis of 217 mammalian miRNAs from 334 samples, including multiple human cancers. The miRNA profiles are surprisingly informative, reflecting the developmental lineage and differentiation state of the tumours. We observe a general downregulation of miRNAs in tumours compared with normal tissues. Furthermore, we were able to successfully classify poorly differentiated tumours using miRNA expression profiles, whereas messenger RNA profiles were highly inaccurate when applied to the same samples. These findings highlight the potential of miRNA profiling in cancer diagnosis.

9,470 citations

Journal ArticleDOI
26 Dec 2003-Cell
TL;DR: The predicted regulatory targets of mammalian miRNAs were enriched for genes involved in transcriptional regulation but also encompassed an unexpectedly broad range of other functions.

5,246 citations

Journal ArticleDOI
25 Sep 2003-Nature
TL;DR: The two RNase III proteins, Drosha and Dicer, may collaborate in the stepwise processing of miRNAs, and have key roles in miRNA-mediated gene regulation in processes such as development and differentiation.
Abstract: Hundreds of small RNAs of approximately 22 nucleotides, collectively named microRNAs (miRNAs), have been discovered recently in animals and plants. Although their functions are being unravelled, their mechanism of biogenesis remains poorly understood. miRNAs are transcribed as long primary transcripts (pri-miRNAs) whose maturation occurs through sequential processing events: the nuclear processing of the pri-miRNAs into stem-loop precursors of approximately 70 nucleotides (pre-miRNAs), and the cytoplasmic processing of pre-miRNAs into mature miRNAs. Dicer, a member of the RNase III superfamily of bidentate nucleases, mediates the latter step, whereas the processing enzyme for the former step is unknown. Here we identify another RNase III, human Drosha, as the core nuclease that executes the initiation step of miRNA processing in the nucleus. Immunopurified Drosha cleaved pri-miRNA to release pre-miRNA in vitro. Furthermore, RNA interference of Drosha resulted in the strong accumulation of pri-miRNA and the reduction of pre-miRNA and mature miRNA in vivo. Thus, the two RNase III proteins, Drosha and Dicer, may collaborate in the stepwise processing of miRNAs, and have key roles in miRNA-mediated gene regulation in processes such as development and differentiation.

5,191 citations