scispace - formally typeset
Search or ask a question
Journal ArticleDOI

One-Minute Synthesis via Electroless Reduction of Amorphous Phosphorus-Doped Graphene for Oxygen Reduction Reaction

About: The article was published on 2021-06-28. It has received 9 citations till now. The article focuses on the topics: Amorphous solid & Graphene.
Citations
More filters
Journal ArticleDOI
Miaomiao He1, Wei An1, Yuanqiang Wang1, Yong Men1, Shuang Liu1 
01 Oct 2021-Small
TL;DR: In this article, the spin-polarized density functional theory coupled with computational hydrogen electrode model is demonstrated that the functionality of hybrid M-B dual-atom center is superior over that of a single or double-M center in driving CO2 electroreduction especially C-C coupling.
Abstract: Double-atom catalyst (DAC) has gained much interest for its versatile tuning and synergistic effect of dual-atom active sites. Metal (M)-metal (M) diatomic sites, either homo- or heteronuclear, are typically researched. Hybrid metal-non-metal combined sites have rarely been studied and even the viability of such active sites are unknown. Herein, CO2 electroreduction (CO2 RR) is explored on M@X-C2 N (M = Fe, Co, Ni, and Cu; X = S, P, and B) which renders naturally generated M-X diatomic site. Using spin-polarized density functional theory coupled with computational hydrogen electrode model, it is demonstrated that the functionality of hybrid M-B dual-atom center is superior over that of a single- or double-M center in driving CO2 RR especially C-C coupling. Among metal-boron DACs studies, Fe@B-C2 N (μ = 2μB ) exhibits the lowest free energy barrier of 0.17 eV in C-C coupling whereas Ni@B-C2 N (μ = 0μB ) mainly produces CH4 with the lowest barrier of 0.42 eV. Hence, the electronic spin state of M can be particularly important in modulating selectivity and C-C coupling barrier in CO2 RR. Fe@B-C2 N is predicted as the promising catalyst for CO2 RR towards C2+ products owing partially to its enhanced spin state. The findings can enrich the design strategy of electrocatalysts normally running at ambient conditions.

29 citations

Journal ArticleDOI
TL;DR: In this paper , the progress of phosphorus-doped graphene (P-graphene) for oxygen reduction reactions (ORRs) has been summarized, including various synthesis methods, ORR performance, and ORR mechanism.
Abstract: Developing cheap and earth-abundant electrocatalysts with high activity and stability for oxygen reduction reactions (ORRs) is highly desired for the commercial implementation of fuel cells and metal-air batteries. Tremendous efforts have been made on doped-graphene catalysts. However, the progress of phosphorus-doped graphene (P-graphene) for ORRs has rarely been summarized until now. This review focuses on the recent development of P-graphene-based materials, including the various synthesis methods, ORR performance, and ORR mechanism. The applications of single phosphorus atom-doped graphene, phosphorus, nitrogen-codoped graphene (P, N-graphene), as well as phosphorus, multi-atoms codoped graphene (P, X-graphene) as catalysts, supporting materials, and coating materials for ORR are discussed thoroughly. Additionally, the current issues and perspectives for the development of P-graphene materials are proposed.

8 citations

Journal ArticleDOI
TL;DR: In this article , the effect of the structure of N-doped few-layer and mono-layer graphenes prepared within one low-temperature approach on their functional behavior as ORR electrocatalysts was investigated.

6 citations

Journal ArticleDOI
Juzhe Liu, Rui Hao, Binbin Jia, Hewei Zhao, Lin Guo 
TL;DR: In this article, a review of the manipulation strategies of 2D amorphous nanomaterials in terms of component interaction and geometric configuration design is presented, and the relationship between manipulation manner and beneficial effect on electrochemical properties is clarified.
Abstract: Low-carbon society is calling for advanced electrochemical energy storage and conversion systems and techniques, in which functional electrode materials are a core factor. As a new member of the material family, two-dimensional amorphous nanomaterials (2D ANMs) are booming gradually and show promising application prospects in electrochemical fields for extended specific surface area, abundant active sites, tunable electron states, and faster ion transport capacity. Specifically, their flexible structures provide significant adjustment room that allows readily and desirable modification. Recent advances have witnessed omnifarious manipulation means on 2D ANMs for enhanced electrochemical performance. Here, this review is devoted to collecting and summarizing the manipulation strategies of 2D ANMs in terms of component interaction and geometric configuration design, expecting to promote the controllable development of such a new class of nanomaterial. Our view covers the 2D ANMs applied in electrochemical fields, including battery, supercapacitor, and electrocatalysis, meanwhile we also clarify the relationship between manipulation manner and beneficial effect on electrochemical properties. Finally, we conclude the review with our personal insights and provide an outlook for more effective manipulation ways on functional and practical 2D ANMs.

5 citations

Journal ArticleDOI
TL;DR: In this paper , a review focused on the metal-free heteroatom-doped carbon catalyst for the generation of hydrogen peroxide by the two-electron oxygen reduction reaction (2e-ORR) is presented.

3 citations

References
More filters
Journal ArticleDOI
06 Feb 2009-Science
TL;DR: It is reported that vertically aligned nitrogen-containing carbon nanotubes (VA-NCNTs) can act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction in alkaline fuel cells.
Abstract: The large-scale practical application of fuel cells will be difficult to realize if the expensive platinum-based electrocatalysts for oxygen reduction reactions (ORRs) cannot be replaced by other efficient, low-cost, and stable electrodes. Here, we report that vertically aligned nitrogen-containing carbon nanotubes (VA-NCNTs) can act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction in alkaline fuel cells. In air-saturated 0.1 molar potassium hydroxide, we observed a steady-state output potential of –80 millivolts and a current density of 4.1 milliamps per square centimeter at –0.22 volts, compared with –85 millivolts and 1.1 milliamps per square centimeter at –0.20 volts for a platinum-carbon electrode. The incorporation of electron-accepting nitrogen atoms in the conjugated nanotube carbon plane appears to impart a relatively high positive charge density on adjacent carbon atoms. This effect, coupled with aligning the NCNTs, provides a four-electron pathway for the ORR on VA-NCNTs with a superb performance.

6,370 citations

Journal ArticleDOI
TL;DR: The state of the art, future directions and open questions in Raman spectroscopy of graphene are reviewed, and essential physical processes whose importance has only recently been recognized are described.
Abstract: Raman spectroscopy is an integral part of graphene research. It is used to determine the number and orientation of layers, the quality and types of edge, and the effects of perturbations, such as electric and magnetic fields, strain, doping, disorder and functional groups. This, in turn, provides insight into all sp(2)-bonded carbon allotropes, because graphene is their fundamental building block. Here we review the state of the art, future directions and open questions in Raman spectroscopy of graphene. We describe essential physical processes whose importance has only recently been recognized, such as the various types of resonance at play, and the role of quantum interference. We update all basic concepts and notations, and propose a terminology that is able to describe any result in literature. We finally highlight the potential of Raman spectroscopy for layered materials other than graphene.

5,673 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the first-order and double resonance Raman scattering mechanisms in graphene, which give rise to the most prominent Raman features and give special emphasis to the possibility of using Raman spectroscopy to distinguish a monolayer from few-layer graphene stacked in the Bernal configuration.

4,945 citations

Journal ArticleDOI
Chenzhen Zhang1, Nasir Mahmood1, Han Yin1, Fei Liu1, Yanglong Hou1 
TL;DR: A simple and economical thermal annealing method is developed for the synthesis of phosphorus-doped graphene, which exhibits remarkable electrocatalytic activity towards the oxygen reduction reaction and enhances the electrochemical performance as an anode material for lithium ion batteries.
Abstract: We develop a simple and economical thermal annealing method for the synthesis of phosphorus-doped graphene, which exhibits remarkable electrocatalytic activity towards the oxygen reduction reaction and enhances the electrochemical performance as an anode material for lithium ion batteries. The experimental results suggest the significant role of phosphorus atoms in graphene.

891 citations

Journal ArticleDOI
TL;DR: This study may stimulate the development of metal-free electrocatalysts for other key energy conversion processes including hydrogen evolution and oxygen evolution reactions and largely expand the spectrum of catalysts for energy-related electrocatalysis reactions.
Abstract: The mutually corroborated electrochemical measurements and density functional theory (DFT) calculations were used to uncover the origin of electrocatalytic activity of graphene-based electrocatalysts for oxygen reduction reaction (ORR). A series of graphenes doped with nonmetal elements was designed and synthesized, and their ORR performance was evaluated in terms of four electrochemical descriptors: exchange current density, on-set potential, reaction pathway selectivity and kinetic current density. It is shown that these descriptors are in good agreement with DFT calculations, allowing derivation of a volcano plot between the ORR activity and the adsorption free energy of intermediates on metal-free materials, similarly as in the case of metallic catalysts. The molecular orbital concept was used to justify this volcano plot, and to theoretically predict the ORR performance of an ideal graphene-based catalyst, the ORR activity of which is comparable to the state-of-the-art Pt catalyst. Moreover, this study may stimulate the development of metal-free electrocatalysts for other key energy conversion processes including hydrogen evolution and oxygen evolution reactions and largely expand the spectrum of catalysts for energy-related electrocatalysis reactions.

890 citations