scispace - formally typeset
Open accessJournal ArticleDOI: 10.1007/S12559-020-09774-W

One-shot Cluster-Based Approach for the Detection of COVID-19 from Chest X-ray Images.

02 Mar 2021-Cognitive Computation (Springer US)-Vol. 13, Iss: 4, pp 1-9
Abstract: Coronavirus disease (COVID-19) has infected over more than 28.3 million people around the globe and killed 913K people worldwide as on 11 September 2020. With this pandemic, to combat the spreading of COVID-19, effective testing methodologies and immediate medical treatments are much required. Chest X-rays are the widely available modalities for immediate diagnosis of COVID-19. Hence, automation of detection of COVID-19 from chest X-ray images using machine learning approaches is of greater demand. A model for detecting COVID-19 from chest X-ray images is proposed in this paper. A novel concept of cluster-based one-shot learning is introduced in this work. The introduced concept has an advantage of learning from a few samples against learning from many samples in case of deep leaning architectures. The proposed model is a multi-class classification model as it classifies images of four classes, viz., pneumonia bacterial, pneumonia virus, normal, and COVID-19. The proposed model is based on ensemble of Generalized Regression Neural Network (GRNN) and Probabilistic Neural Network (PNN) classifiers at decision level. The effectiveness of the proposed model has been demonstrated through extensive experimentation on a publicly available dataset consisting of 306 images. The proposed cluster-based one-shot learning has been found to be more effective on GRNN and PNN ensembled model to distinguish COVID-19 images from that of the other three classes. It has also been experimentally observed that the model has a superior performance over contemporary deep learning architectures. The concept of one-shot cluster-based learning is being first of its kind in literature, expected to open up several new dimensions in the field of machine learning which require further researching for various applications.

... read more


21 results found

Open accessJournal ArticleDOI: 10.1007/S12559-020-09773-X
Abstract: Recent technological advancements in data acquisition tools allowed life scientists to acquire multimodal data from different biological application domains. Categorized in three broad types (i.e. images, signals, and sequences), these data are huge in amount and complex in nature. Mining such enormous amount of data for pattern recognition is a big challenge and requires sophisticated data-intensive machine learning techniques. Artificial neural network-based learning systems are well known for their pattern recognition capabilities, and lately their deep architectures—known as deep learning (DL)—have been successfully applied to solve many complex pattern recognition problems. To investigate how DL—especially its different architectures—has contributed and been utilized in the mining of biological data pertaining to those three types, a meta-analysis has been performed and the resulting resources have been critically analysed. Focusing on the use of DL to analyse patterns in data from diverse biological domains, this work investigates different DL architectures’ applications to these data. This is followed by an exploration of available open access data sources pertaining to the three data types along with popular open-source DL tools applicable to these data. Also, comparative investigations of these tools from qualitative, quantitative, and benchmarking perspectives are provided. Finally, some open research challenges in using DL to mine biological data are outlined and a number of possible future perspectives are put forward.

... read more

Topics: Biological data (61%)

103 Citations

Open accessJournal ArticleDOI: 10.1109/ACCESS.2021.3050193
08 Jan 2021-IEEE Access
Abstract: The recent outbreak of the novel Coronavirus Disease (COVID-19) has given rise to diverse health issues due to its high transmission rate and limited treatment options. Almost the whole world, at some point of time, was placed in lock-down in an attempt to stop the spread of the virus, with resulting psychological and economic sequela. As countries start to ease lock-down measures and reopen industries, ensuring a healthy workplace for employees has become imperative. Thus, this paper presents a mobile app-based intelligent portable healthcare (pHealth) tool, called ${i}$ WorkSafe, to assist industries in detecting possible suspects for COVID-19 infection among their employees who may need primary care. Developed mainly for low-end Android devices, the ${i}$ WorkSafe app hosts a fuzzy neural network model that integrates data of employees’ health status from the industry’s database, proximity and contact tracing data from the mobile devices, and user-reported COVID-19 self-test data. Using the built-in Bluetooth low energy sensing technology and K Nearest Neighbor and K-means techniques, the app is capable of tracking users’ proximity and trace contact with other employees. Additionally, it uses a logistic regression model to calculate the COVID-19 self-test score and a Bayesian Decision Tree model for checking real-time health condition from an intelligent e-health platform for further clinical attention of the employees. Rolled out in an apparel factory on 12 employees as a test case, the pHealth tool generates an alert to maintain social distancing among employees inside the industry. In addition, the app helps employees to estimate risk with possible COVID-19 infection based on the collected data and found that the score is effective in estimating personal health condition of the app user.

... read more

30 Citations

Open accessJournal ArticleDOI: 10.1007/S12559-021-09848-3
Asu Kumar Singh1, Anupam Kumar1, Mufti Mahmud2, M. Shamim Kaiser3  +1 moreInstitutions (3)
Abstract: A novel strain of Coronavirus, identified as the Severe Acute Respiratory Syndrome-2 (SARS-CoV-2), outbroke in December 2019 causing the novel Corona Virus Disease (COVID-19). Since its emergence, the virus has spread rapidly and has been declared a global pandemic. As of the end of January 2021, there are almost 100 million cases worldwide with over 2 million confirmed deaths. Widespread testing is essential to reduce further spread of the disease, but due to a shortage of testing kits and limited supply, alternative testing methods are being evaluated. Recently researchers have found that chest X-Ray (CXR) images provide salient information about COVID-19. An intelligent system can help the radiologists to detect COVID-19 from these CXR images which can come in handy at remote locations in many developing nations. In this work, we propose a pipeline that uses CXR images to detect COVID-19 infection. The features from the CXR images were extracted and the relevant features were then selected using Hybrid Social Group Optimization algorithm. The selected features were then used to classify the CXR images using a number of classifiers. The proposed pipeline achieves a classification accuracy of 99.65% using support vector classifier, which outperforms other state-of-the-art deep learning algorithms for binary and multi-class classification.

... read more

14 Citations

Book ChapterDOI: 10.1007/978-981-15-9682-7_9
Mufti Mahmud1, M. Shamim Kaiser2Institutions (2)
01 Jan 2021-
Abstract: In today’s digitised world, machine learning (ML) has been playing a very important role in identifying patterns from the ever-growing amount of data made available by the devices and sensors used in the day-to-day activities. Applications of ML have enriched many fields directly connected to our daily lives including education, finance, governance, healthcare, security and surveillance, etc. Its applications can also be extended in facilitating the management of pandemics, especially when the world is experiencing an unprecedented pandemic caused by the novel coronavirus disease (COVID-19). This chapter aims to provide an account of how ML can be utilised in fighting pandemics in general, with a focus on the COVID-19.

... read more

Topics: Pandemic (51%)

13 Citations

Open accessJournal ArticleDOI: 10.1109/ACCESS.2021.3071400
06 Apr 2021-IEEE Access
Abstract: An earthquake is a tremor felt on the surface of the earth created by the movement of the major pieces of its outer shell. Till now, many attempts have been made to forecast earthquakes, which saw some success, but these attempted models are specific to a region. In this paper, an earthquake occurrence and location prediction model is proposed. After reviewing the literature, long short-term memory (LSTM) is found to be a good option for building the model because of its memory-keeping ability. Using the Keras tuner, the best model was selected from candidate models, which are composed of combinations of various LSTM architectures and dense layers. This selected model used seismic indicators from the earthquake catalog of Bangladesh as features to predict earthquakes of the following month. Attention mechanism was added to the LSTM architecture to improve the model’s earthquake occurrence prediction accuracy, which was 74.67%. Additionally, a regression model was built using LSTM and dense layers to predict the earthquake epicenter as a distance from a predefined location, which provided a root mean square error of 1.25.

... read more

Topics: Earthquake prediction (63%)

8 Citations


25 results found

Open accessProceedings ArticleDOI: 10.1109/CVPR.2016.90
Kaiming He1, Xiangyu Zhang1, Shaoqing Ren1, Jian Sun1Institutions (1)
27 Jun 2016-
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

... read more

Topics: Deep learning (53%), Residual (53%), Convolutional neural network (53%) ... read more

93,356 Citations

Journal ArticleDOI: 10.1016/0893-6080(90)90049-Q
Donald F. Specht1Institutions (1)
01 Jan 1990-Neural Networks
Abstract: By replacing the sigmoid activation function often used in neural networks with an exponential function, a probabilistic neural network (PNN) that can compute nonlinear decision boundaries which approach the Bayes optimal is formed. Alternate activation functions having similar properties are also discussed. A fourlayer neural network of the type proposed can map any input pattern to any number of classifications. The decision boundaries can be modified in real-time using new data as they become available, and can be implemented using artificial hardware “neurons” that operate entirely in parallel. Provision is also made for estimating the probability and reliability of a classification as well as making the decision. The technique offers a tremendous speed advantage for problems in which the incremental adaptation time of back propagation is a significant fraction of the total computation time. For one application, the PNN paradigm was 200,000 times faster than back-propagation.

... read more

Topics: Probabilistic neural network (66%), Activation function (59%), Artificial neural network (58%) ... read more

3,600 Citations

Open accessJournal ArticleDOI: 10.1016/J.CELL.2018.02.010
22 Feb 2018-Cell
Abstract: Summary The implementation of clinical-decision support algorithms for medical imaging faces challenges with reliability and interpretability. Here, we establish a diagnostic tool based on a deep-learning framework for the screening of patients with common treatable blinding retinal diseases. Our framework utilizes transfer learning, which trains a neural network with a fraction of the data of conventional approaches. Applying this approach to a dataset of optical coherence tomography images, we demonstrate performance comparable to that of human experts in classifying age-related macular degeneration and diabetic macular edema. We also provide a more transparent and interpretable diagnosis by highlighting the regions recognized by the neural network. We further demonstrate the general applicability of our AI system for diagnosis of pediatric pneumonia using chest X-ray images. This tool may ultimately aid in expediting the diagnosis and referral of these treatable conditions, thereby facilitating earlier treatment, resulting in improved clinical outcomes. Video Abstract

... read more

Topics: Medical diagnosis (54%)

1,588 Citations

Open accessJournal ArticleDOI: 10.1038/S41598-020-76550-Z
Linda Wang1, Zhong Qiu Lin1, Alexander Wong1Institutions (1)
11 Nov 2020-Scientific Reports
Abstract: The Coronavirus Disease 2019 (COVID-19) pandemic continues to have a devastating effect on the health and well-being of the global population. A critical step in the fight against COVID-19 is effective screening of infected patients, with one of the key screening approaches being radiology examination using chest radiography. It was found in early studies that patients present abnormalities in chest radiography images that are characteristic of those infected with COVID-19. Motivated by this and inspired by the open source efforts of the research community, in this study we introduce COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest X-ray (CXR) images that is open source and available to the general public. To the best of the authors' knowledge, COVID-Net is one of the first open source network designs for COVID-19 detection from CXR images at the time of initial release. We also introduce COVIDx, an open access benchmark dataset that we generated comprising of 13,975 CXR images across 13,870 patient patient cases, with the largest number of publicly available COVID-19 positive cases to the best of the authors' knowledge. Furthermore, we investigate how COVID-Net makes predictions using an explainability method in an attempt to not only gain deeper insights into critical factors associated with COVID cases, which can aid clinicians in improved screening, but also audit COVID-Net in a responsible and transparent manner to validate that it is making decisions based on relevant information from the CXR images. By no means a production-ready solution, the hope is that the open access COVID-Net, along with the description on constructing the open source COVIDx dataset, will be leveraged and build upon by both researchers and citizen data scientists alike to accelerate the development of highly accurate yet practical deep learning solutions for detecting COVID-19 cases and accelerate treatment of those who need it the most.

... read more

1,154 Citations

Open accessPosted Content
Abstract: Background and Purpose: Coronaviruses (CoV) are perilous viruses that may cause Severe Acute Respiratory Syndrome (SARS-CoV), Middle East Respiratory Syndrome (MERS-CoV). The novel 2019 Coronavirus disease (COVID-19) was discovered as a novel disease pneumonia in the city of Wuhan, China at the end of 2019. Now, it becomes a Coronavirus outbreak around the world, the number of infected people and deaths are increasing rapidly every day according to the updated reports of the World Health Organization (WHO). Therefore, the aim of this article is to introduce a new deep learning framework; namely COVIDX-Net to assist radiologists to automatically diagnose COVID-19 in X-ray images. Materials and Methods: Due to the lack of public COVID-19 datasets, the study is validated on 50 Chest X-ray images with 25 confirmed positive COVID-19 cases. The COVIDX-Net includes seven different architectures of deep convolutional neural network models, such as modified Visual Geometry Group Network (VGG19) and the second version of Google MobileNet. Each deep neural network model is able to analyze the normalized intensities of the X-ray image to classify the patient status either negative or positive COVID-19 case. Results: Experiments and evaluation of the COVIDX-Net have been successfully done based on 80-20% of X-ray images for the model training and testing phases, respectively. The VGG19 and Dense Convolutional Network (DenseNet) models showed a good and similar performance of automated COVID-19 classification with f1-scores of 0.89 and 0.91 for normal and COVID-19, respectively. Conclusions: This study demonstrated the useful application of deep learning models to classify COVID-19 in X-ray images based on the proposed COVIDX-Net framework. Clinical studies are the next milestone of this research work.

... read more

486 Citations