scispace - formally typeset
Journal ArticleDOI

One-Step Fabrication of Ultrathin Porous Nickel Hydroxide-Manganese Dioxide Hybrid Nanosheets for Supercapacitor Electrodes with Excellent Capacitive Performance

Reads0
Chats0
TLDR
In this article, a facile one-step hydrothermal co-deposition method for growth of ultrathin Ni(OH)2-MnO2 hybrid nanosheet arrays on three dimensional (3D) macroporous nickel foam is presented.
Abstract
A facile one-step hydrothermal co-deposition method for growth of ultrathin Ni(OH)2-MnO2 hybrid nanosheet arrays on three dimensional (3D) macroporous nickel foam is presented. Due to the highly hydrophilic and ultrathin nature of hybrid nanosheets, as well as the synergetic effects of Ni(OH)2 and MnO2, the as-fabricated Ni(OH)2-MnO2 hybrid electrode exhibits an ultrahigh specific capacitance of 2628 F g−1. Moreover, the asymmetric supercapacitor with the as-obtained Ni(OH)2-MnO2 hybrid film as the positive electrode and the reduced graphene oxide as the negative electrode has a high energy density (186 Wh kg−1 at 778 W kg−1), based on the total mass of active materials.

read more

Citations
More filters

Ultracapacitors: Why, How, and Where is the Technology

TL;DR: In this paper, the authors compared the power density characteristics of ultracapacitors and batteries with respect to the same charge/discharge efficiency, and showed that the battery can achieve energy densities of 10 Wh/kg or higher with a power density of 1.2 kW/kg.
Journal ArticleDOI

MnO2-based nanostructures for high-performance supercapacitors

TL;DR: MnO2-based materials have been intensively investigated for use in pseudocapacitors due to their high theoretical specific capacitance, good chemical and thermal stability, natural abundance, environmental benignity and low cost as mentioned in this paper.
Journal ArticleDOI

NiCo2S4 Nanosheets Grown on Nitrogen‐Doped Carbon Foams as an Advanced Electrode for Supercapacitors

TL;DR: In this article, the rational design and fabrication of NiCo2S4 nanosheets supported on nitrogen-doped carbon foams (NCF) is presented as a novel flexible electrode for supercapacitors.
Journal ArticleDOI

Recent Advances in Two-Dimensional Nanomaterials for Supercapacitor Electrode Applications

TL;DR: In this article, a review of 2D supercapacitor electrode materials including transition metal dichalcogenides, transition metal oxides and hydroxides, MXenes, and phosphorene is presented.
Journal ArticleDOI

High-performance flexible asymmetric supercapacitors based on a new graphene foam/carbon nanotube hybrid film

TL;DR: In this paper, a 3D graphene foam (GF)/carbon nanotube (CNT) hybrid film with high flexibility and robustness was used as the ideal support for deposition of large amounts of electrochemically active materials per unit area.
References
More filters
Journal ArticleDOI

Materials for electrochemical capacitors

TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Journal ArticleDOI

What Are Batteries, Fuel Cells, and Supercapacitors?

TL;DR: Batteries, fuel cells and supercapacitors belong to the same family of energy conversion devices and are needed to service the wide energy requirements of various devices and systems.
Journal ArticleDOI

Ordered mesoporous [alpha]-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors

TL;DR: It is shown that the capacitive charge-storage properties of mesoporous films of iso-oriented alpha-MoO(3) are superior to those of either Mesoporous amorphous material or non-porous crystalline MoO( 3).
Journal ArticleDOI

Ultracapacitors: why, how, and where is the technology

TL;DR: In this article, the authors compared the power density characteristics of ultracapacitors and batteries with respect to the same charge/discharge efficiency and showed that the battery can achieve energy densities of 10 Wh/kg or higher with a power density of 1-2 kW/kg.
Journal ArticleDOI

Carbon Materials for Chemical Capacitive Energy Storage

TL;DR: In order to further improve the power and energy densities of the capacitors, carbon-based composites combining electrical double layer capacitors (EDLC)-capacitance and pseudo-Capacitance have been explored and show not only enhanced capacitance, but as well good cyclability.
Related Papers (5)