scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Opening the black box: Low-dimensional dynamics in high-dimensional recurrent neural networks

01 Mar 2013-Neural Computation (MIT Press 55 Hayward Street, Cambridge, MA 02142-1315 email: journals-info@mit.edu)-Vol. 25, Iss: 3, pp 626-649
TL;DR: The hypothesis that fixed points, both stable and unstable, and the linearized dynamics around them, can reveal crucial aspects of how RNNs implement their computations is explored.
Abstract: Recurrent neural networks RNNs are useful tools for learning nonlinear relationships between time-varying inputs and outputs with complex temporal dependencies. Recently developed algorithms have been successful at training RNNs to perform a wide variety of tasks, but the resulting networks have been treated as black boxes: their mechanism of operation remains unknown. Here we explore the hypothesis that fixed points, both stable and unstable, and the linearized dynamics around them, can reveal crucial aspects of how RNNs implement their computations. Further, we explore the utility of linearization in areas of phase space that are not true fixed points but merely points of very slow movement. We present a simple optimization technique that is applied to trained RNNs to find the fixed and slow points of their dynamics. Linearization around these slow regions can be used to explore, or reverse-engineer, the behavior of the RNN. We describe the technique, illustrate it using simple examples, and finally showcase it on three high-dimensional RNN examples: a 3-bit flip-flop device, an input-dependent sine wave generator, and a two-point moving average. In all cases, the mechanisms of trained networks could be inferred from the sets of fixed and slow points and the linearized dynamics around them.
Citations
More filters
Journal ArticleDOI
07 Nov 2013-Nature
TL;DR: This work studies prefrontal cortex activity in macaque monkeys trained to flexibly select and integrate noisy sensory inputs towards a choice, and finds that the observed complexity and functional roles of single neurons are readily understood in the framework of a dynamical process unfolding at the level of the population.
Abstract: Prefrontal cortex is thought to have a fundamental role in flexible, context-dependent behaviour, but the exact nature of the computations underlying this role remains largely unknown. In particular, individual prefrontal neurons often generate remarkably complex responses that defy deep understanding of their contribution to behaviour. Here we study prefrontal cortex activity in macaque monkeys trained to flexibly select and integrate noisy sensory inputs towards a choice. We find that the observed complexity and functional roles of single neurons are readily understood in the framework of a dynamical process unfolding at the level of the population. The population dynamics can be reproduced by a trained recurrent neural network, which suggests a previously unknown mechanism for selection and integration of task-relevant inputs. This mechanism indicates that selection and integration are two aspects of a single dynamical process unfolding within the same prefrontal circuits, and potentially provides a novel, general framework for understanding context-dependent computations.

1,416 citations

Book
22 Sep 2014
TL;DR: This textbook for advanced undergraduate and beginning graduate students provides a thorough and up-to-date introduction to the fields of computational and theoretical neuroscience.
Abstract: What happens in our brain when we make a decision? What triggers a neuron to send out a signal? What is the neural code? This textbook for advanced undergraduate and beginning graduate students provides a thorough and up-to-date introduction to the fields of computational and theoretical neuroscience. It covers classical topics, including the Hodgkin-Huxley equations and Hopfield model, as well as modern developments in the field such as Generalized Linear Models and decision theory. Concepts are introduced using clear step-by-step explanations suitable for readers with only a basic knowledge of differential equations and probabilities, and are richly illustrated by figures and worked-out examples. End-of-chapter summaries and classroom-tested exercises make the book ideal for courses or for self-study. The authors also give pointers to the literature and an extensive bibliography, which will prove invaluable to readers interested in further study.

942 citations

Journal ArticleDOI
TL;DR: The current regulatory environment in the United States is summarized and comparisons are highlighted with other regions in the world, notably Europe and China, to bring the full potential of AI to the clinic.
Abstract: The development of artificial intelligence (AI)-based technologies in medicine is advancing rapidly, but real-world clinical implementation has not yet become a reality. Here we review some of the key practical issues surrounding the implementation of AI into existing clinical workflows, including data sharing and privacy, transparency of algorithms, data standardization, and interoperability across multiple platforms, and concern for patient safety. We summarize the current regulatory environment in the United States and highlight comparisons with other regions in the world, notably Europe and China.

904 citations

Journal ArticleDOI
TL;DR: Surgeons are well positioned to help integrate AI into modern practice and should partner with data scientists to capture data across phases of care and to provide clinical context, for AI has the potential to revolutionize the way surgery is taught and practiced.
Abstract: Objective:The aim of this review was to summarize major topics in artificial intelligence (AI), including their applications and limitations in surgery. This paper reviews the key capabilities of AI to help surgeons understand and critically evaluate new AI applications and to contribute to new deve

515 citations


Cites background from "Opening the black box: Low-dimensio..."

  • ...Un An important concern regarding AI algorithms involves their interpretability,(51) for techniques such as neural networks are based on a ‘‘black box’’ design.(52) Although the automated nature of neural networks allows for detection of patterns missed by humans, human scientists are left with little ability to assess how or why such patterns were discerned by the computer....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors examine whether participation in an ecosystem partnership improves the business performance of small independent software vendors (ISVs) in the enterprise software industry and how appropriability mechanisms influence the benefits of partnership.
Abstract: It has been argued that platform technology owners cocreate business value with other firms in their platform ecosystems by encouraging complementary invention and exploiting indirect network effects. In this study, we examine whether participation in an ecosystem partnership improves the business performance of small independent software vendors (ISVs) in the enterprise software industry and how appropriability mechanisms influence the benefits of partnership. By analyzing the partnering activities and performance indicators of a sample of 1,210 small ISVs over the period 1996-2004, we find that joining a major platform owner's platform ecosystem is associated with an increase in sales and a greater likelihood of issuing an initial public offering (IPO). In addition, we show that these impacts are greater when ISVs have greater intellectual property rights or stronger downstream capabilities. This research highlights the value of interoperability between software products, and stresses that value cocreation and appropriation are not mutually exclusive strategies in interfirm collaboration.

484 citations

References
More filters
Book
01 Mar 2004
TL;DR: In this article, the focus is on recognizing convex optimization problems and then finding the most appropriate technique for solving them, and a comprehensive introduction to the subject is given. But the focus of this book is not on the optimization problem itself, but on the problem of finding the appropriate technique to solve it.
Abstract: Convex optimization problems arise frequently in many different fields. A comprehensive introduction to the subject, this book shows in detail how such problems can be solved numerically with great efficiency. The focus is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. The text contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance, and economics.

33,341 citations

Book ChapterDOI
01 Jan 1988
TL;DR: This chapter contains sections titled: The Problem, The Generalized Delta Rule, Simulation Results, Some Further Generalizations, Conclusion.
Abstract: This chapter contains sections titled: The Problem, The Generalized Delta Rule, Simulation Results, Some Further Generalizations, Conclusion

17,604 citations

Journal ArticleDOI
TL;DR: A model of a system having a large number of simple equivalent components, based on aspects of neurobiology but readily adapted to integrated circuits, produces a content-addressable memory which correctly yields an entire memory from any subpart of sufficient size.
Abstract: Computational properties of use of biological organisms or to the construction of computers can emerge as collective properties of systems having a large number of simple equivalent components (or neurons). The physical meaning of content-addressable memory is described by an appropriate phase space flow of the state of a system. A model of such a system is given, based on aspects of neurobiology but readily adapted to integrated circuits. The collective properties of this model produce a content-addressable memory which correctly yields an entire memory from any subpart of sufficient size. The algorithm for the time evolution of the state of the system is based on asynchronous parallel processing. Additional emergent collective properties include some capacity for generalization, familiarity recognition, categorization, error correction, and time sequence retention. The collective properties are only weakly sensitive to details of the modeling or the failure of individual devices.

16,652 citations


"Opening the black box: Low-dimensio..." refers result in this paper

  • ...This is in contrast to network models that are explicitly constructed to implement a specific known mechanism (see Wang, 2008; Hopfield, 1982)....

    [...]

Book
03 Jan 1986
TL;DR: In this paper, the problem of the generalized delta rule is discussed and the Generalized Delta Rule is applied to the simulation results of simulation results in terms of the generalized delta rule.
Abstract: This chapter contains sections titled: The Problem, The Generalized Delta Rule, Simulation Results, Some Further Generalizations, Conclusion

13,579 citations

Journal ArticleDOI
TL;DR: This work shows why gradient based learning algorithms face an increasingly difficult problem as the duration of the dependencies to be captured increases, and exposes a trade-off between efficient learning by gradient descent and latching on information for long periods.
Abstract: Recurrent neural networks can be used to map input sequences to output sequences, such as for recognition, production or prediction problems. However, practical difficulties have been reported in training recurrent neural networks to perform tasks in which the temporal contingencies present in the input/output sequences span long intervals. We show why gradient based learning algorithms face an increasingly difficult problem as the duration of the dependencies to be captured increases. These results expose a trade-off between efficient learning by gradient descent and latching on information for long periods. Based on an understanding of this problem, alternatives to standard gradient descent are considered. >

7,309 citations