scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Operational and Spectral Stability of Perovskite Light-Emitting Diodes

10 Sep 2021-ACS energy letters (American Chemical Society (ACS))-Vol. 6, Iss: 9, pp 3114-3131
About: This article is published in ACS energy letters.The article was published on 2021-09-10. It has received 31 citations till now. The article focuses on the topics: Perovskite (structure).
Citations
More filters
Journal ArticleDOI
TL;DR: In this article , a review of the recent developments in halide perovskite γ-ray detectors is presented, with an outlook on the field, with emphasis on the challenges to be overcome.
Abstract: Detecting hard X-rays and γ-rays with high energy resolution is critical for medical and industrial applications, high-energy fundamental physics, and homeland security. Two types of radiation detectors, indirect-conversion (scintillators) and direct-conversion (solid-state) detectors, are the most widely used technologies. Semiconductor-based detectors that can directly convert γ-rays into an electrical signal and operate at room temperature are especially important as portable and cost-efficient detectors with high sensitivity and energy resolution. Recently, lead halide perovskites have attracted enormous interest for γ-ray detection, and significant progress has been made toward practical detectors using perovskites as active materials. In this Review, we start with the fundamentals of γ-ray detection and review the recent developments in halide perovskite γ-ray detectors. The key factors affecting the detector performance are summarized. We also give an outlook on the field, with emphasis on the challenges to be overcome.

33 citations

Journal ArticleDOI
TL;DR: In this paper , the key issues and challenges of metal halides with self-trapped exciton (STE•MHs) as the single-layered emitter in WLEDs are discussed.
Abstract: Metal halides with self‐trapped exciton (STE‐MHs) featuring broadband emission have manifested great potential in white light‐emitting diodes (WLEDs) with encouraging progress proceeding at an exhilarating pace. In this Perspective article, the focus is on the key issues and challenges of STE‐MH as the single‐layered emitter in WLEDs after providing a brief introduction for STE and its working mechanism of the relevant white‐light emission. Possible approaches and future research directions for efficient STE‐MH‐based WLEDs are also put forward, aiming at promoting their application in the next‐generation high‐quality solid‐state lighting sources.

10 citations

Journal ArticleDOI
TL;DR: In this article , the lattice strain in perovskite films and the stability of the resulting PeLEDs is analyzed. But the lattices strain is not optimized to maximize the lifetime of a PeLED.
Abstract: The development of perovskite light-emitting diodes (PeLEDs) with both high efficiency and excellent stability remains challenging. Herein, a strong correlation between the lattice strain in perovskite films and the stability of resulting PeLEDs is revealed. Based on high-efficiency PeLEDs, the device lifetime is optimized by rationally tailoring the lattice strain in perovskite films. A PeLED with a high peak external quantum efficiency of 18.2% and a long lifetime of 151 h (T70, under a current density of 20 mA cm−2) is realized with a minimized lattice strain in the perovskite film. In addition, an increase in the lattice strain is found during the long-time device stability test, indicating that the degradation of the local perovskite lattice structure could be one of the degradation mechanisms for long-term stable PeLEDs.

9 citations

References
More filters
Journal ArticleDOI
TL;DR: Two organolead halide perovskite nanocrystals were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells, which exhibit strong band-gap absorptions as semiconductors.
Abstract: Two organolead halide perovskite nanocrystals, CH3NH3PbBr3 and CH3NH3PbI3, were found to efficiently sensitize TiO2 for visible-light conversion in photoelectrochemical cells. When self-assembled on mesoporous TiO2 films, the nanocrystalline perovskites exhibit strong band-gap absorptions as semiconductors. The CH3NH3PbI3-based photocell with spectral sensitivity of up to 800 nm yielded a solar energy conversion efficiency of 3.8%. The CH3NH3PbBr3-based cell showed a high photovoltage of 0.96 V with an external quantum conversion efficiency of 65%.

16,634 citations

Journal ArticleDOI
TL;DR: The compelling combination of enhanced optical properties and chemical robustness makes CsPbX3 nanocrystals appealing for optoelectronic applications, particularly for blue and green spectral regions (410–530 nm), where typical metal chalcogenide-based quantum dots suffer from photodegradation.
Abstract: Metal halides perovskites, such as hybrid organic–inorganic CH3NH3PbI3, are newcomer optoelectronic materials that have attracted enormous attention as solution-deposited absorbing layers in solar cells with power conversion efficiencies reaching 20%. Herein we demonstrate a new avenue for halide perovskites by designing highly luminescent perovskite-based colloidal quantum dot materials. We have synthesized monodisperse colloidal nanocubes (4–15 nm edge lengths) of fully inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I or mixed halide systems Cl/Br and Br/I) using inexpensive commercial precursors. Through compositional modulations and quantum size-effects, the bandgap energies and emission spectra are readily tunable over the entire visible spectral region of 410–700 nm. The photoluminescence of CsPbX3 nanocrystals is characterized by narrow emission line-widths of 12–42 nm, wide color gamut covering up to 140% of the NTSC color standard, high quantum yields of up to 90%, and radiativ...

6,170 citations

Journal ArticleDOI
TL;DR: It is shown, using photoluminescence studies, that radiative bimolecular recombination is dominant at higher excitation densities, Hence, the quantum efficiencies of the perovskite light-emitting diodes increase at higher current densities.
Abstract: Solid-state light-emitting devices based on direct-bandgap semiconductors have, over the past two decades, been utilized as energy-efficient sources of lighting. However, fabrication of these devices typically relies on expensive high-temperature and high-vacuum processes, rendering them uneconomical for use in large-area displays. Here, we report high-brightness light-emitting diodes based on solution-processed organometal halide perovskites. We demonstrate electroluminescence in the near-infrared, green and red by tuning the halide compositions in the perovskite. In our infrared device, a thin 15 nm layer of CH3NH3PbI(3-x)Cl(x) perovskite emitter is sandwiched between larger-bandgap titanium dioxide (TiO2) and poly(9,9'-dioctylfluorene) (F8) layers, effectively confining electrons and holes in the perovskite layer for radiative recombination. We report an infrared radiance of 13.2 W sr(-1) m(-2) at a current density of 363 mA cm(-2), with highest external and internal quantum efficiencies of 0.76% and 3.4%, respectively. In our green light-emitting device with an ITO/PEDOT:PSS/CH3NH3PbBr3/F8/Ca/Ag structure, we achieved a luminance of 364 cd m(-2) at a current density of 123 mA cm(-2), giving external and internal quantum efficiencies of 0.1% and 0.4%, respectively. We show, using photoluminescence studies, that radiative bimolecular recombination is dominant at higher excitation densities. Hence, the quantum efficiencies of the perovskite light-emitting diodes increase at higher current densities. This demonstration of effective perovskite electroluminescence offers scope for developing this unique class of materials into efficient and colour-tunable light emitters for low-cost display, lighting and optical communication applications.

3,466 citations

Journal ArticleDOI
01 Oct 2018-Nature
TL;DR: In this article, the authors describe visible-light-emitting perovskite LEDs that surpass the quantum efficiency milestone of 20.3 per cent, which is achieved by a new strategy for managing the compositional distribution in the device.
Abstract: Metal halide perovskite materials are an emerging class of solution-processable semiconductors with considerable potential for use in optoelectronic devices1–3. For example, light-emitting diodes (LEDs) based on these materials could see application in flat-panel displays and solid-state lighting, owing to their potential to be made at low cost via facile solution processing, and could provide tunable colours and narrow emission line widths at high photoluminescence quantum yields4–8. However, the highest reported external quantum efficiencies of green- and red-light-emitting perovskite LEDs are around 14 per cent7,9 and 12 per cent8, respectively—still well behind the performance of organic LEDs10–12 and inorganic quantum dot LEDs13. Here we describe visible-light-emitting perovskite LEDs that surpass the quantum efficiency milestone of 20 per cent. This achievement stems from a new strategy for managing the compositional distribution in the device—an approach that simultaneously provides high luminescence and balanced charge injection. Specifically, we mixed a presynthesized CsPbBr3 perovskite with a MABr additive (where MA is CH3NH3), the differing solubilities of which yield sequential crystallization into a CsPbBr3/MABr quasi-core/shell structure. The MABr shell passivates the nonradiative defects that would otherwise be present in CsPbBr3 crystals, boosting the photoluminescence quantum efficiency, while the MABr capping layer enables balanced charge injection. The resulting 20.3 per cent external quantum efficiency represents a substantial step towards the practical application of perovskite LEDs in lighting and display. A strategy for managing the compositional distribution in metal halide perovskite light-emitting diodes enables them to surpass 20% external quantum efficiency—a step towards their practical application in lighting and displays.

2,346 citations

Journal ArticleDOI
TL;DR: The results of this combined computational and experimental study suggest that hybrid halide perovskites are mixed ionic–electronic conductors, a finding that has major implications for solar cell device architectures.
Abstract: Understanding the mechanism of ionic transport in organic–inorganic halide perovskites is crucial for the design of future solar cells. Here, Eames et al. undertake a combined experimental and computational study to elucidate the ion conducting species and help rationalize the unusual behaviour observed in these perovskite-based devices.

2,050 citations