scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Opportunities of Sustainable Manufacturing in Industry 4.0

01 Jan 2016-Procedia CIRP (Elsevier)-Vol. 40, pp 536-541
TL;DR: In this article, the authors present a state-of-the-art review of Industry 4.0 based on recent developments in research and practice, and present an overview of different opportunities for sustainable manufacturing in Industry 5.0.
About: This article is published in Procedia CIRP.The article was published on 2016-01-01 and is currently open access. It has received 1276 citations till now. The article focuses on the topics: Sustainable development & Sustainability.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a holistic procedure model for digital retrofitting is presented, which is the result of an analysis and clustering of existing process models, incorporating the perspectives on digital strategy, interdisciplinarity, change and lean management and provides a guideline for companies leading to a more effective and efficient implementation process with sustainable impact.
Abstract: Digital Transformation is a demanding evolutional process for industrial companies that touches all important business areas. A central role for the development towards a more flexible and efficient manufacture play production data. However, most machines in use lack a digital interface, such that they are not capable to connect in a network. Thus, data cannot be utilized. One solution from the technical perspective is Digital Retrofitting focusing on the implementation of additional sensors and edge devices to digitally connect the machine and transforming it into a cyber-physical system. This approach is also economically promising for companies since investing in new machines is far more expensive than the retrofitting of legacy systems. Nevertheless, industrial practice shows that Digital Retrofitting projects often do not lead to sustainable solutions because they lack integration into the digital transformation process. This paper thus introduces a holistic procedure model for Digital Retrofitting that is the result of an analysis and clustering of existing process models. The framework incorporates the perspectives on digital strategy, interdisciplinarity, change and lean management and, therefore, provides a guideline for companies leading to a more effective and efficient implementation process with sustainable impact. Furthermore, a description of a successful validation of the procedure model is given on the example of a condition monitoring use case in the Smart Production Lab of FH JOANNEUM.

5 citations

Journal ArticleDOI
TL;DR: In this article , the authors present a holistic IS capability framework for Industry 4.0, including primary and support capabilities, based on a structured literature review, and demonstrate its use with a German machinery manufacturer.
Abstract: Digital technologies revolutionise the manufacturing industry by connecting the physical and digital worlds. The resulting paradigm shift, referred to as Industry 4.0, impacts manufacturing processes and business models. While the 'why' and 'what' of Industry 4.0 have been extensively researched, the 'how' remains poorly understood. Manufacturers struggle with exploiting Industry 4.0's full potential as a holistic understanding of required Information Systems (IS) capabilities is missing. To foster such understanding, we present a holistic IS capability framework for Industry 4.0, including primary and support capabilities. After developing the framework based on a structured literature review, we refined and evaluated it with ten Industry 4.0 experts from research and practice. We demonstrated its use with a German machinery manufacturer. In sum, we contribute to understanding and analysing IS capabilities for Industry 4.0. Our work serves as a foundation for further theorising on Industry 4.0 and for deriving theory-led design recommendations for manufacturers.

5 citations

Journal ArticleDOI
TL;DR: In this article , the authors identify the implementation barriers of smart manufacturing and explore the cause-effect relationship between them using a fuzzy-based Decision Making Trial and Evaluation Laboratory (DEMATEL) approach.
Abstract: Smart manufacturing is transforming the industry, and its adoption offers significant benefits to manufacturers, suppliers and customers, such as enhanced organisational performance, competitive advantage, mass customisation, improved sustainability and better collaboration. The objective of this research is to identify the implementation barriers of smart manufacturing and to explore the cause–effect relationship between them using a fuzzy-based Decision Making Trial and Evaluation Laboratory (DEMATEL) approach. Through expert opinions and literature review, 20 barriers to smart manufacturing adoption were identified. The results showed that ‘lack of product digitisation’, ‘lack of ubiquitous design and manufacturing setup’, ‘resistance to change’, ‘lack of data synchronisation’ and ‘lack of high tech infrastructure support’ were the significant barriers in the Indian Micro, Small and Medium Enterprises (MSMEs). The paper intends to guide the managers, governmental organisations and smart manufacturing service providers to formulate effective smart factory adoption strategies in the manufacturing domain.

5 citations

Journal ArticleDOI
TL;DR: This paper analyses current gaps towards a model that allows representing both structural and behavioral characteristics of I4.0 elements and suggests a few steps to address these gaps.

5 citations

References
More filters
01 Jan 1998
TL;DR: Porter's concept of the value chain disaggregates a company into "activities", or the discrete functions or processes that represent the elemental building blocks of competitive advantage as discussed by the authors, has become an essential part of international business thinking, taking strategy from broad vision to an internally consistent configuration of activities.
Abstract: COMPETITIVE ADVANTAGE introduces a whole new way of understanding what a firm does. Porter's groundbreaking concept of the value chain disaggregates a company into 'activities', or the discrete functions or processes that represent the elemental building blocks of competitive advantage. Now an essential part of international business thinking, COMPETITIVE ADVANTAGE takes strategy from broad vision to an internally consistent configuration of activities. Its powerful framework provides the tools to understand the drivers of cost and a company's relative cost position. Porter's value chain enables managers to isolate the underlying sources of buyer value that will command a premium price, and the reasons why one product or service substitutes for another. He shows how competitive advantage lies not only in activities themselves but in the way activities relate to each other, to supplier activities, and to customer activities. That the phrases 'competitive advantage' and 'sustainable competitive advantage' have become commonplace is testimony to the power of Porter's ideas. COMPETITIVE ADVANTAGE has guided countless companies, business school students, and scholars in understanding the roots of competition. Porter's work captures the extraordinary complexity of competition in a way that makes strategy both concrete and actionable.

17,979 citations

Journal ArticleDOI
TL;DR: In this paper, a Gaussian process classifier was used to estimate the probability of computerisation for 702 detailed occupations, and the expected impacts of future computerisation on US labour market outcomes, with the primary objective of analyzing the number of jobs at risk and the relationship between an occupations probability of computing, wages and educational attainment.

4,853 citations

Journal ArticleDOI
TL;DR: In this article, sustainable business models (SBM) incorporate a triple bottom line approach and consider a wide range of stakeholder interests, including environment and society, to drive and implement corporate innovation for sustainability, can help embed sustainability into business purpose and processes, and serve as a key driver of competitive advantage.

2,360 citations


"Opportunities of Sustainable Manufa..." refers background in this paper

  • ...for the environment or society [19] or they can even fundamentally contribute to solving an environmental or social problem [20]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors propose a framework to position sustainable entrepreneurship in relation to sustainability innovation, which is based on a typology of sustainable entrepreneurship, including social and institutional entrepreneurship.
Abstract: The purpose of this paper is to propose a framework to position sustainable entrepreneurship in relation to sustainability innovation. The framework builds on a typology of sustainable entrepreneurship, develops it by including social and institutional entrepreneurship, i.e. the application of the entrepreneurial approach towards meeting societal goals and towards changing market contexts, and relates it to sustainability innovation. The framework provides a reference for managers to introduce sustainability innovation and to pursue sustainable entrepreneurship. Methodologically, the paper develops an approach of qualitative measurement of sustainable entrepreneurship and how to assess the position of a company in a classification matrix. The degree of environmental or social responsibility orientation in the company is assessed on the basis of environmental and social goals and policies, the organization of environmental and social management in the company and the communication of environmental and social issues. The market impact of the company is measured on the basis of market share, sales growth and reactions of competitors. The paper finds conditions under which sustainable entrepreneurship and sustainability innovation emerge spontaneously. The research has implications for theory and practitioners in that it clarifies which firms are most likely under specific conditions to make moves towards sustainability innovation. The paper makes a contribution in showing that extant research needs to be expanded with regard to motivations for innovation and that earlier models of sustainable entrepreneurship need to be refined. Copyright © 2010 John Wiley & Sons, Ltd and ERP Environment.

1,129 citations

Journal ArticleDOI
Marian Chertow1
TL;DR: In this paper, the authors provide a historical view of the motivations and means for pursuing industrial symbiosis, defined to include physical exchanges of materials, energy, water, and by-products among diversified clusters of firms.
Abstract: Summary Since 1989, efforts to understand the nature of interfirm resource sharing in the form of industrial symbiosis and to replicate in a deliberate way what was largely self-organizing in Kalundborg, Denmark have followed many paths, some with much success and some with very little. This article provides a historical view of the motivations and means for pursuing industrial symbiosis—defined to include physical exchanges of materials, energy, water, and by-products among diversified clusters of firms. It finds that “uncovering” existing symbioses has led to more sustainable industrial development than attempts to design and build eco-industrial parks incorporating physical exchanges. By examining 15 proposed projects brought to national and international attention by the U.S. President’s Council on Sustainable Development beginning in the early 1990s, and contrasting these with another 12 projects observed to share more elements of self-organization, recommendations are offered to stimulate the identification and uncovering of already existing “kernels” of symbiosis. In addition, policies and practices are suggested to identify early-stage precursors of potentially larger symbioses that can be nurtured and developed further. The article concludes that environmentally and economically desirable symbiotic exchanges are all around us and now we must shift our gaze to find and foster them.

924 citations


"Opportunities of Sustainable Manufa..." refers background in this paper

  • ...cooperation of different factories for realizing a competitive advantage by trading and exchanging products, materials, energy, water [21] and also smart data on a local level....

    [...]