scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Opportunities of Sustainable Manufacturing in Industry 4.0

01 Jan 2016-Procedia CIRP (Elsevier)-Vol. 40, pp 536-541
TL;DR: In this article, the authors present a state-of-the-art review of Industry 4.0 based on recent developments in research and practice, and present an overview of different opportunities for sustainable manufacturing in Industry 5.0.
About: This article is published in Procedia CIRP.The article was published on 2016-01-01 and is currently open access. It has received 1276 citations till now. The article focuses on the topics: Sustainable development & Sustainability.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a review of the essential basics that should be focused in every trial to comprehensively understand the thermal hazards of reactive chemicals and further research directions are also presented based on the current research gaps.

51 citations

Journal ArticleDOI
01 Apr 2021
TL;DR: The experimental results have demonstrated that the AI-assisted CM offers the possibility of higher production flexibility and efficiency, and the state-of-the-art AI technologies, that is, machine learning, multiagent systems, Internet of Things, big data, and cloud-edge computing, are surveyed.
Abstract: The traditional production paradigm of large batch production does not offer flexibility toward satisfying the requirements of individual customers. A new generation of smart factories is expected to support new multivariety and small-batch customized production modes. For this, artificial intelligence (AI) is enabling higher value-added manufacturing by accelerating the integration of manufacturing and information communication technologies, including computing, communication, and control. The characteristics of a customized smart factory are: self-perception, operations optimization, dynamic reconfiguration, and intelligent decision-making. The AI technologies will allow manufacturing systems to perceive the environment, adapt to the external needs, and extract the process knowledge, including business models, such as intelligent production, networked collaboration, and extended service models. This article focuses on the implementation of AI in customized manufacturing (CM). The architecture of an AI-driven customized smart factory is presented. Details of intelligent manufacturing devices, intelligent information interaction, and construction of a flexible manufacturing line are showcased. The state-of-the-art AI technologies of potential use in CM, that is, machine learning, multiagent systems, Internet of Things, big data, and cloud-edge computing, are surveyed. The AI-enabled technologies in a customized smart factory are validated with a case study of customized packaging. The experimental results have demonstrated that the AI-assisted CM offers the possibility of higher production flexibility and efficiency. Challenges and solutions related to AI in CM are also discussed.

51 citations


Cites background from "Opportunities of Sustainable Manufa..."

  • ...In the context of CM, data transmission with different real-time constraints has become a critical requirement [103]....

    [...]

Journal ArticleDOI
TL;DR: An organizational and human performance approach to improve the emerging risk management linked to the complex systems, like as Human-Machine Interactions (HMI) and Human-Robot Interaction (HRI) is proposed.
Abstract: Industry 4.0 in the contemporary operating context carries important sources of complexity. This context generates both traditional risks and emerging risks that must be managed. The management of these risks includes both industrial risks and occupational risks, since they are heavily interlinked. The human factor can be considered the main link between both types of risks. Thus, understanding risks originating from human errors and organizational weaknesses as causes of accidents and other disruptions in complex systems requires elaborating sophisticated modeling approaches. Therefore, the objective of this paper is to propose an organizational and human performance approach to improve the emerging risk management linked to the complex systems, like as Human-Machine Interactions (HMI) and Human-Robot Interaction (HRI). To fulfill this objective, we first introduce the concept of emerging risk linked to human factor. Then, we introduce the concept of emerging risk management in the Industry 4.0 context. Under this complex context, we expose the concept considering the current models of risk management. Finally, we discuss how enhancing human and organizational performance can be achieved through risk management in complex systems linked to Industry 4.0. Therefore, we conclude that while Industry 4.0 brings numerous advantages, it must contend with emerging risks and challenges associated with organizational and human factors. These emerging risks include industrial risks as well as occupational risks. Moreover, the human factor aspect of Industry 4.0 is directly linked to industrial emerging and occupational emerging via context of operations. To cope with these new challenges, it is necessary to develop new approaches. One of such approaches is Complex System Governance. This approach is discussed along with the need for adequate organizational and human performance models dealing with, for example, experience from other domains such as nuclear, space, aviation, and petrochemical.

50 citations

Journal ArticleDOI
TL;DR: This study seems to be the first of its kind in which 25 digitization enablers categorized in four main categories are ranked using a multi-criteria decision-making (MCDM) tool and ranked the organizations in their SC performance based on weights/ranks of digitizationEnablers.
Abstract: The aim of this study is to identify and prioritize a list of key digitization enablers that can improve supply chain management (SCM). SCM is an important driver for organization's competitive advantage. The fierce competition in the market has forced companies to look the past conventional decision-making process, which is based on intuition and previous experience. The swift evolution of information technologies (ITs) and digitization tools has changed the scenario for many industries, including those involved in SCM.,The Best Worst Method (BWM) has been applied to evaluate, rank and prioritize the key digitization and IT enablers beneficial for the improvement of SC performance. The study also used additive value function to rank the organizations on their SC performance with respect to digitization enablers.,The total of 25 key enablers have been identified and ranked. The results revealed that “big data/data science skills”, “tracking and localization of products” and “appropriate and feasibility study for aiding the selection and adoption of big data technologies and techniques ” are the top three digitization and IT enablers that organizations need to focus much in order to improve their SC performance. The study also ranked the SC performance of the organizations based on digitization enablers.,The findings of this study will help the organizations to focus on certain digitization technologies in order to improve their SC performance. This study also provides an original framework for organizations to rank the key digitization enablers according to enablers relevant in their context and also to compare their performance with their counterparts.,This study seems to be the first of its kind in which 25 digitization enablers categorized in four main categories are ranked using a multi-criteria decision-making (MCDM) tool. This study is also first of its kind in ranking the organizations in their SC performance based on weights/ranks of digitization enablers.

50 citations

Journal ArticleDOI
TL;DR: A dynamic and self-adapting supply chain system supported with Artificial Intelligence and Machine Learning and real-time intelligence for predictive cyber risk analytics is identified that enhances capacities and assist in the creation of a comprehensive understanding of the opportunities and threats that arise when edge computing nodes are deployed, and when AI/ML technologies are migrated to the periphery of IoT networks.
Abstract: Digital technologies have changed the way supply chain operations are structured. In this article, we conduct systematic syntheses of literature on the impact of new technologies on supply chains and the related cyber risks. A taxonomic/cladistic approach is used for the evaluations of progress in the area of supply chain integration in the Industrial Internet of Things and Industry 4.0, with a specific focus on the mitigation of cyber risks. An analytical framework is presented, based on a critical assessment with respect to issues related to new types of cyber risk and the integration of supply chains with new technologies. This paper identifies a dynamic and self-adapting supply chain system supported with Artificial Intelligence and Machine Learning (AI/ML) and real-time intelligence for predictive cyber risk analytics. The system is integrated into a cognition engine that enables predictive cyber risk analytics with real-time intelligence from IoT networks at the edge. This enhances capacities and assist in the creation of a comprehensive understanding of the opportunities and threats that arise when edge computing nodes are deployed, and when AI/ML technologies are migrated to the periphery of IoT networks.

49 citations

References
More filters
01 Jan 1998
TL;DR: Porter's concept of the value chain disaggregates a company into "activities", or the discrete functions or processes that represent the elemental building blocks of competitive advantage as discussed by the authors, has become an essential part of international business thinking, taking strategy from broad vision to an internally consistent configuration of activities.
Abstract: COMPETITIVE ADVANTAGE introduces a whole new way of understanding what a firm does. Porter's groundbreaking concept of the value chain disaggregates a company into 'activities', or the discrete functions or processes that represent the elemental building blocks of competitive advantage. Now an essential part of international business thinking, COMPETITIVE ADVANTAGE takes strategy from broad vision to an internally consistent configuration of activities. Its powerful framework provides the tools to understand the drivers of cost and a company's relative cost position. Porter's value chain enables managers to isolate the underlying sources of buyer value that will command a premium price, and the reasons why one product or service substitutes for another. He shows how competitive advantage lies not only in activities themselves but in the way activities relate to each other, to supplier activities, and to customer activities. That the phrases 'competitive advantage' and 'sustainable competitive advantage' have become commonplace is testimony to the power of Porter's ideas. COMPETITIVE ADVANTAGE has guided countless companies, business school students, and scholars in understanding the roots of competition. Porter's work captures the extraordinary complexity of competition in a way that makes strategy both concrete and actionable.

17,979 citations

Journal ArticleDOI
TL;DR: In this paper, a Gaussian process classifier was used to estimate the probability of computerisation for 702 detailed occupations, and the expected impacts of future computerisation on US labour market outcomes, with the primary objective of analyzing the number of jobs at risk and the relationship between an occupations probability of computing, wages and educational attainment.

4,853 citations

Journal ArticleDOI
TL;DR: In this article, sustainable business models (SBM) incorporate a triple bottom line approach and consider a wide range of stakeholder interests, including environment and society, to drive and implement corporate innovation for sustainability, can help embed sustainability into business purpose and processes, and serve as a key driver of competitive advantage.

2,360 citations


"Opportunities of Sustainable Manufa..." refers background in this paper

  • ...for the environment or society [19] or they can even fundamentally contribute to solving an environmental or social problem [20]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors propose a framework to position sustainable entrepreneurship in relation to sustainability innovation, which is based on a typology of sustainable entrepreneurship, including social and institutional entrepreneurship.
Abstract: The purpose of this paper is to propose a framework to position sustainable entrepreneurship in relation to sustainability innovation. The framework builds on a typology of sustainable entrepreneurship, develops it by including social and institutional entrepreneurship, i.e. the application of the entrepreneurial approach towards meeting societal goals and towards changing market contexts, and relates it to sustainability innovation. The framework provides a reference for managers to introduce sustainability innovation and to pursue sustainable entrepreneurship. Methodologically, the paper develops an approach of qualitative measurement of sustainable entrepreneurship and how to assess the position of a company in a classification matrix. The degree of environmental or social responsibility orientation in the company is assessed on the basis of environmental and social goals and policies, the organization of environmental and social management in the company and the communication of environmental and social issues. The market impact of the company is measured on the basis of market share, sales growth and reactions of competitors. The paper finds conditions under which sustainable entrepreneurship and sustainability innovation emerge spontaneously. The research has implications for theory and practitioners in that it clarifies which firms are most likely under specific conditions to make moves towards sustainability innovation. The paper makes a contribution in showing that extant research needs to be expanded with regard to motivations for innovation and that earlier models of sustainable entrepreneurship need to be refined. Copyright © 2010 John Wiley & Sons, Ltd and ERP Environment.

1,129 citations

Journal ArticleDOI
Marian Chertow1
TL;DR: In this paper, the authors provide a historical view of the motivations and means for pursuing industrial symbiosis, defined to include physical exchanges of materials, energy, water, and by-products among diversified clusters of firms.
Abstract: Summary Since 1989, efforts to understand the nature of interfirm resource sharing in the form of industrial symbiosis and to replicate in a deliberate way what was largely self-organizing in Kalundborg, Denmark have followed many paths, some with much success and some with very little. This article provides a historical view of the motivations and means for pursuing industrial symbiosis—defined to include physical exchanges of materials, energy, water, and by-products among diversified clusters of firms. It finds that “uncovering” existing symbioses has led to more sustainable industrial development than attempts to design and build eco-industrial parks incorporating physical exchanges. By examining 15 proposed projects brought to national and international attention by the U.S. President’s Council on Sustainable Development beginning in the early 1990s, and contrasting these with another 12 projects observed to share more elements of self-organization, recommendations are offered to stimulate the identification and uncovering of already existing “kernels” of symbiosis. In addition, policies and practices are suggested to identify early-stage precursors of potentially larger symbioses that can be nurtured and developed further. The article concludes that environmentally and economically desirable symbiotic exchanges are all around us and now we must shift our gaze to find and foster them.

924 citations


"Opportunities of Sustainable Manufa..." refers background in this paper

  • ...cooperation of different factories for realizing a competitive advantage by trading and exchanging products, materials, energy, water [21] and also smart data on a local level....

    [...]