scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Optical Fingerprints of Polynuclear Complexes in Lead Halide Perovskite Precursor Solutions.

02 Mar 2021-Journal of Physical Chemistry Letters (The American Chemical Society (ACS))-Vol. 12, Iss: 9, pp 2299-2305
TL;DR: In this article, the optical spectra of the quasi-one-dimensional iodoplumbate complexes PbI2(DMSO)4, Pb2I4(DSO)6, and Pb3I6(DsO)8 formed in dimethyl sulfoxide solutions are compatible with the spectral fingerprints measured at high lead iodide concentrations.
Abstract: Solvent-solute interactions in precursor solutions of lead halide perovskites (LHPs) critically impact the quality of solution-processed materials, as they lead to the formation of a variety of poly-iodoplumbates that act as building blocks for LHPs. The formation of [PbI2+n]n- complexes is often expected in diluted solutions, while coordination occurring at high concentrations is not yet well understood. In a combined ab initio and experimental work, we demonstrate that the optical spectra of the quasi-one-dimensional iodoplumbate complexes PbI2(DMSO)4, Pb2I4(DMSO)6, and Pb3I6(DMSO)8 formed in dimethyl sulfoxide solutions are compatible with the spectral fingerprints measured at high lead iodide concentrations. This finding suggests that the interpretation of optical spectra of LHP precursor solutions should account for the formation of polynuclear lead halide complexes.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a comprehensive overview of perovskite semiconductors is presented and an informed perspective of where this field is heading and what challenges we have to overcome to get to successful commercialization.
Abstract: Metal halide perovskites are the first solution processed semiconductors that can compete in their functionality with conventional semiconductors, such as silicon. Over the past several years, perovskite semiconductors have reported breakthroughs in various optoelectronic devices, such as solar cells, photodetectors, light emitting and memory devices, and so on. Until now, perovskite semiconductors face challenges regarding their stability, reproducibility, and toxicity. In this Roadmap, we combine the expertise of chemistry, physics, and device engineering from leading experts in the perovskite research community to focus on the fundamental material properties, the fabrication methods, characterization and photophysical properties, perovskite devices, and current challenges in this field. We develop a comprehensive overview of the current state-of-the-art and offer readers an informed perspective of where this field is heading and what challenges we have to overcome to get to successful commercialization.

81 citations

Journal ArticleDOI
TL;DR: In this article , the amount of residual DMSO can be reduced in as-spin-coated films significantly through use of preheated substrates, or a so-called hot casting method.
Abstract: High‐performance inorganic–organic lead halide perovskite solar cells (PSCs) are often fabricated with a liquid additive such as dimethyl sulfoxide (DMSO), which retards crystallization and reduces roughness and pinholes in the perovskite layers. However, DMSO can be trapped during perovskite film formation and induce voids and undesired reaction byproducts upon later processing steps. Here, it is shown that the amount of residual DMSO can be reduced in as‐spin‐coated films significantly through use of preheated substrates, or a so‐called hot‐casting method. Hot casting increases the perovskite film thickness given the same concentration of solutions, which allows for reducing the perovskite solution concentration. By reducing the amount of DMSO in proportion to the concentration of perovskite precursors and using hot casting, it is possible to fabricate perovskite layers with improved perovskite–substrate interfaces by suppressing the formation of byproducts, which increase trap density and accelerate degradation of the perovskite layers. The best‐performing PSCs exhibit a power conversion efficiency (PCE) of 23.4% (23.0% stabilized efficiency) under simulated solar illumination. Furthermore, encapsulated devices show considerably reduced post‐burn‐in decay, retaining 75% and 90% of their initial and post‐burn‐in efficiencies after 3000 h of operation with maximum power point tracking (MPPT) under high power of ultraviolet (UV)‐containing continuous light exposure.

12 citations

Journal ArticleDOI
13 Sep 2021
TL;DR: In this article, the so-called "chlorine rout" is used to control perovskite growth from solution, which is crucial for efficient optoelectronic applications.
Abstract: Controlled perovskite growth from solution is crucial for efficient optoelectronic applications and requires a deep understanding of the perovskite precursor chemistry. The so-called “chlorine rout...

8 citations

Journal ArticleDOI
TL;DR: In this article , a combination of density functional theory (DFT) calculations and ab-initio molecular dynamics (AIMD) simulations is used to study the complex evolution of the molecular species from the solution to the initial stage of the crystallization.

6 citations

Journal ArticleDOI
TL;DR: In this paper, the role of halogen species and solvent molecules in the formation of lead halide (LH) perovskite solution precursors was investigated using density-functional theory in conjunction with the polarizable continuum model.
Abstract: Understanding the formation of lead halide (LH) perovskite solution precursors is crucial to gain insight into the evolution of these materials to thin films for solar cells. Using density-functional theory in conjunction with the polarizable continuum model, we investigate 18 complexes with chemical formula PbX$_2$M$_4$, where X = Cl, Br, I and M are common solvent molecules. Through the analysis of structural properties, binding energies, and charge distributions, we clarify the role of halogen species and solvent molecules in the formation of LH perovskite precursors. We find that interatomic distances are critically affected by the halogen species, while the energetic stability is driven by the solvent coordination to the backbones. Regardless of the solvent, lead iodide complexes are more strongly bound than the others. Based on the charge distribution analysis, we find that all solvent molecules bind covalently with the LH backbones and that Pb-I and Pb-Br bonds lose ionicity in solution. Our results contribute to clarify the physical properties of LH perovskite solution precursors and offer a valuable starting point for further investigations on their crystalline intermediates.

3 citations

References
More filters
Journal ArticleDOI
TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Abstract: Generalized gradient approximations (GGA’s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. [S0031-9007(96)01479-2] PACS numbers: 71.15.Mb, 71.45.Gm Kohn-Sham density functional theory [1,2] is widely used for self-consistent-field electronic structure calculations of the ground-state properties of atoms, molecules, and solids. In this theory, only the exchange-correlation energy EXC › EX 1 EC as a functional of the electron spin densities n"srd and n#srd must be approximated. The most popular functionals have a form appropriate for slowly varying densities: the local spin density (LSD) approximation Z d 3 rn e unif

146,533 citations

Journal ArticleDOI
TL;DR: In this paper, the Hartree and Hartree-Fock equations are applied to a uniform electron gas, where the exchange and correlation portions of the chemical potential of the gas are used as additional effective potentials.
Abstract: From a theory of Hohenberg and Kohn, approximation methods for treating an inhomogeneous system of interacting electrons are developed. These methods are exact for systems of slowly varying or high density. For the ground state, they lead to self-consistent equations analogous to the Hartree and Hartree-Fock equations, respectively. In these equations the exchange and correlation portions of the chemical potential of a uniform electron gas appear as additional effective potentials. (The exchange portion of our effective potential differs from that due to Slater by a factor of $\frac{2}{3}$.) Electronic systems at finite temperatures and in magnetic fields are also treated by similar methods. An appendix deals with a further correction for systems with short-wavelength density oscillations.

47,477 citations

Journal ArticleDOI
TL;DR: In this article, the ground state of an interacting electron gas in an external potential was investigated and it was proved that there exists a universal functional of the density, called F[n(mathrm{r})], independent of the potential of the electron gas.
Abstract: This paper deals with the ground state of an interacting electron gas in an external potential $v(\mathrm{r})$. It is proved that there exists a universal functional of the density, $F[n(\mathrm{r})]$, independent of $v(\mathrm{r})$, such that the expression $E\ensuremath{\equiv}\ensuremath{\int}v(\mathrm{r})n(\mathrm{r})d\mathrm{r}+F[n(\mathrm{r})]$ has as its minimum value the correct ground-state energy associated with $v(\mathrm{r})$. The functional $F[n(\mathrm{r})]$ is then discussed for two situations: (1) $n(\mathrm{r})={n}_{0}+\stackrel{\ifmmode \tilde{}\else \~{}\fi{}}{n}(\mathrm{r})$, $\frac{\stackrel{\ifmmode \tilde{}\else \~{}\fi{}}{n}}{{n}_{0}}\ensuremath{\ll}1$, and (2) $n(\mathrm{r})=\ensuremath{\phi}(\frac{\mathrm{r}}{{r}_{0}})$ with $\ensuremath{\phi}$ arbitrary and ${r}_{0}\ensuremath{\rightarrow}\ensuremath{\infty}$. In both cases $F$ can be expressed entirely in terms of the correlation energy and linear and higher order electronic polarizabilities of a uniform electron gas. This approach also sheds some light on generalized Thomas-Fermi methods and their limitations. Some new extensions of these methods are presented.

38,160 citations

Journal ArticleDOI
TL;DR: In this article, a new hybrid exchange-correlation functional named CAM-B3LYP is proposed, which combines the hybrid qualities of B3LYP and the long-range correction presented by Tawada et al.

10,882 citations

Journal ArticleDOI
TL;DR: It is found that the energy gap scales inversely with the ribbon width, thus demonstrating the ability to engineer the band gap of graphene nanostructures by lithographic processes.
Abstract: We investigate electronic transport in lithographically patterned graphene ribbon structures where the lateral confinement of charge carriers creates an energy gap near the charge neutrality point. Individual graphene layers are contacted with metal electrodes and patterned into ribbons of varying widths and different crystallographic orientations. The temperature dependent conductance measurements show larger energy gaps opening for narrower ribbons. The sizes of these energy gaps are investigated by measuring the conductance in the nonlinear response regime at low temperatures. We find that the energy gap scales inversely with the ribbon width, thus demonstrating the ability to engineer the band gap of graphene nanostructures by lithographic processes.

4,969 citations