scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Optical Holography: Principles, Techniques and Applications

01 Apr 1985-Physics Bulletin (IOP Publishing)-Vol. 36, Iss: 4, pp 178-178
TL;DR: Hariharan as mentioned in this paper provides a self-contained treatment of the principles, techniques and applications of optical holography with particular emphasis on recent developments with a wide range of topics at a level suitable for both the student and research worker.
Abstract: P Hariharan 1984 Cambridge: Cambridge University Press xii + 319 pp price £35 ISBN 0 521 24348 3 It is the declared aim of the author of this book to provide a 'self-contained treatment of the principles, techniques and applications of optical holography with particular emphasis on recent developments'. He has covered a wide range of topics in this expanding field at a level which is suitable for both the student and research worker.
Citations
More filters
Journal ArticleDOI
TL;DR: Metasurfaces have been a topic of significant research and are used in various applications due to their unique ability to manipulate electromagnetic waves in microwave and optical frequencies as mentioned in this paper, which has the advantages of light weight, ease of fabrication, and ability to control wave propagation both on the surface and in the surrounding free space.
Abstract: Metasurfaces are a topic of significant research and are used in various applications due to their unique ability to manipulate electromagnetic waves in microwave and optical frequencies. These artificial sheet materials, which are usually composed of metallic patches or dielectric etchings in planar or multi-layer configurations with subwavelength thickness, have the advantages of light weight, ease of fabrication, and ability to control wave propagation both on the surface and in the surrounding free space. Recent progress in the field has been classified by application and reviewed in this article. Starting with the development of frequency-selective surfaces and metamaterials, the unique capabilities of different kinds of metasurfaces have been highlighted. Surface impedance can be varied and manipulated by patterning the metasurface unit cells, which has broad applications in surface wave absorbers and surface waveguides. They also enable beam shaping in both transmission and reflection. Another important application is to radiate in a leaky wave mode as an antenna. Other applications of metasurfaces include cloaking, polarizers, and modulators. The controllable surface refractive index provided by metasurfaces can also be applied to lenses. When active and non-linear components are added to traditional metasurfaces, exceptional tunability and switching ability are enabled. Finally, metasurfaces allow applications in new forms of imaging.

339 citations


Cites background from "Optical Holography: Principles, Tec..."

  • ...Holographic antennas borrow their design concept from optical holography [117], which is used for recording and recreating a complex optical wavefront....

    [...]

Journal ArticleDOI
TL;DR: A new type of holographic interface is reported, able to manipulate the three fundamental properties of light (phase, amplitude, and polarization) over a broad wavelength range, and it is demonstrated that it can operate over a wide range of wavelengths.
Abstract: We report a new type of holographic interface, which is able to manipulate the three fundamental properties of light (phase, amplitude, and polarization) over a broad wavelength range. The design strategy relies on replacing the large openings of conventional holograms by arrays of subwavelength apertures, oriented to locally select a particular state of polarization. The resulting optical element can therefore be viewed as the superposition of two independent structures with very different length scales, that is, a hologram with each of its apertures filled with nanoscale openings to only transmit a desired state of polarization. As an implementation, we fabricated a nanostructured holographic plate that can generate radially polarized optical beams from circularly polarized incident light, and we demonstrated that it can operate over a broad range of wavelengths. The ability of a single holographic interface to simultaneously shape the amplitude, phase, and polarization of light can find widespread applications in photonics.

259 citations

Journal ArticleDOI
Mark E. Lucente1
01 May 1997
TL;DR: Only a real-time electronic holographic ("holovideo") display can create a truly 3D computer graphics image with all of the depth cues and resolution sufficient to provide extreme realism.
Abstract: Computer graphics is confined chiefly to flat images. Images may look three-dimensional (3D), and sometimes create the illusion of 3D when displayed, for example, on a stereoscopic display [16, 13, 12]. Nevertheless, when viewing an image on most display systems, the human visual system (HVS) sees a flat plane of pixels. Volumetric displays can create a 3D computer graphics image, but fail to provide many visual depth cues (e.g. shading texture gradients) and cannot provide the powerful depth cue of overlap (occlusion). Discrete parallax displays (such as lenticular displays) promise to create 3D images with all of the depth cues, but are limited by achievable resolution. Only a real-time electronic holographic ("holovideo") display [11, 6, 8, 7, 9, 21, 22, 20, 2] can create a truly 3D computer graphics image with all of the depth cues (motion parallax, ocular accommodation, occlusion, etc.) and resolution sufficient to provide extreme realism [13]. Holovideo displays promise to enhance numerous applications in the creation and manipulation of information, including telepresence, education, medical imaging, interactive design and scientific visualization.The technology of electronic interactive three-dimensional holographic displays is in its first decade. Though fancied in popular science fiction, only recently have researchers created the first real holovideo systems by confronting the two basic requirements of electronic holography: computational speed and high-bandwidth modulation of visible light. This article describes the approaches used to address these problems, as well as emerging technologies and techniques that provide firm footing for the development of practical holovideo.

127 citations


Cites methods from "Optical Holography: Principles, Tec..."

  • ...The conventional approach to computing fringes is to simulate optical interference, the physical process used to record optical holograms [13]....

    [...]

  • ...Optical holography, used to create 3-D images, begins by using coherent light to record an interference pattern [13]....

    [...]

Journal ArticleDOI
04 Feb 2011
TL;DR: It is demonstrated that either laser or light-emitting diode (LED) illumination is feasible, and Multi-SLM designs, especially over curved surfaces, relieve high bandwidth requirements, and therefore, are strong candidates for futuristic holographic video displays.
Abstract: Holography aims to record and regenerate volume filling light fields to reproduce ghost-like 3-D images that are optically indistinguishable from their physical 3-D originals. Digital holographic video displays are pixelated devices on which digital holograms can be written at video rates. Spatial light modulators (SLMs) are used for such purposes in practice; even though it is desirable to have SLMs that can modulate both the phase and amplitude of the incident light at each pixel, usually amplitude-only or phase-only SLMs are available. Many laboratories have reported working prototypes using different designs. Size and resolution of the SLMs are quite demanding for satisfactory 3-D reconstructions. Space-bandwidth product (SBP) seems like a good metric for quality analysis. Even though moderate SBP is satisfactory for a stationary observer with no lateral or rotational motion, the required SBP quickly increases when such motion is allowed. Multi-SLM designs, especially over curved surfaces, relieve high bandwidth requirements, and therefore, are strong candidates for futuristic holographic video displays. Holograms are quite robust to noise and quantization. It is demonstrated that either laser or light-emitting diode (LED) illumination is feasible. Current research momentum is increasing with many exciting and encouraging results.

126 citations


Additional excerpts

  • ...D displays; 3DTV...

    [...]

Journal ArticleDOI
TL;DR: Methods of generating multiple viewpoint projection holograms of three-dimensional (3-D) realistic objects illuminated by incoherent white light are reviewed, and the proposed hybrid optical-digital process can yield novel types of holograms such as the modified Fresnel hologram and the protected correlation hologram.
Abstract: Methods of generating multiple viewpoint projection holograms of three-dimensional (3-D) realistic objects illuminated by incoherent white light are reviewed in this paper. Using these methods, it is possible to obtain holograms with a simple digital camera, operating in regular light conditions. Thus, most disadvantages characterizing conventional digital holography, namely the need for a powerful, highly coherent laser and extreme stability of the optical system, are avoided. The proposed holographic processes are composed of two stages. In the first stage, regular intensity-based images of the 3-D scene are captured from multiple points of view by a simple digital camera. In the second stage, the acquired projections are digitally processed to yield the complex digital hologram of the 3-D scene, where no interference is involved in the process. For highly reflecting 3-D objects, the resulting hologram is equivalent to an optical hologram of the objects recorded from the central point of view. We first review various methods to acquire the multiple viewpoint projections. These include the use of a microlens array and a macrolens array, as well as digitally generated projections that are not acquired optically. Next, we show how to digitally process the acquired projections to Fourier, Fresnel, and image holograms. Additionally, to obtain certain advantages over the known types of holograms, the proposed hybrid optical-digital process can yield novel types of holograms such as the modified Fresnel hologram and the protected correlation hologram. The prospective goal of these methods is to facilitate the design of a simple and portable digital holographic camera that can be useful for a variety of practical applications, including 3-D video acquisition and various types of biomedical imaging. We review several of these applications to signify the advantages of multiple viewpoint projection holography.

117 citations

References
More filters
Book
01 Jan 1984
TL;DR: In this paper, a self-contained treatment of the principles, techniques and applications of optical holography, with particular emphasis on recent developments, is presented, along with a detailed description of the most important applications.
Abstract: This book presents a self-contained treatment of the principles, techniques and applications of optical holography, with particular emphasis on recent developments. The first part deals with the theory of holographic imaging, the characteristics of the reconstructed image and the different types of holograms. The next section covers the practical aspects of holography - optical systems, light sources and recording media - as well as the production of holograms for display, colour holography and computer-generated holograms. Finally, there is a detailed description of the most important applications of holography. These include particle-size analysis, high-resolution imaging, holographic optical elements and information storage and processing, as well as holographic interferometry and its use in stress analysis, vibration studies and contouring.

355 citations

Journal ArticleDOI
TL;DR: Metasurfaces have been a topic of significant research and are used in various applications due to their unique ability to manipulate electromagnetic waves in microwave and optical frequencies as mentioned in this paper, which has the advantages of light weight, ease of fabrication, and ability to control wave propagation both on the surface and in the surrounding free space.
Abstract: Metasurfaces are a topic of significant research and are used in various applications due to their unique ability to manipulate electromagnetic waves in microwave and optical frequencies. These artificial sheet materials, which are usually composed of metallic patches or dielectric etchings in planar or multi-layer configurations with subwavelength thickness, have the advantages of light weight, ease of fabrication, and ability to control wave propagation both on the surface and in the surrounding free space. Recent progress in the field has been classified by application and reviewed in this article. Starting with the development of frequency-selective surfaces and metamaterials, the unique capabilities of different kinds of metasurfaces have been highlighted. Surface impedance can be varied and manipulated by patterning the metasurface unit cells, which has broad applications in surface wave absorbers and surface waveguides. They also enable beam shaping in both transmission and reflection. Another important application is to radiate in a leaky wave mode as an antenna. Other applications of metasurfaces include cloaking, polarizers, and modulators. The controllable surface refractive index provided by metasurfaces can also be applied to lenses. When active and non-linear components are added to traditional metasurfaces, exceptional tunability and switching ability are enabled. Finally, metasurfaces allow applications in new forms of imaging.

339 citations

Journal ArticleDOI
TL;DR: A new type of holographic interface is reported, able to manipulate the three fundamental properties of light (phase, amplitude, and polarization) over a broad wavelength range, and it is demonstrated that it can operate over a wide range of wavelengths.
Abstract: We report a new type of holographic interface, which is able to manipulate the three fundamental properties of light (phase, amplitude, and polarization) over a broad wavelength range. The design strategy relies on replacing the large openings of conventional holograms by arrays of subwavelength apertures, oriented to locally select a particular state of polarization. The resulting optical element can therefore be viewed as the superposition of two independent structures with very different length scales, that is, a hologram with each of its apertures filled with nanoscale openings to only transmit a desired state of polarization. As an implementation, we fabricated a nanostructured holographic plate that can generate radially polarized optical beams from circularly polarized incident light, and we demonstrated that it can operate over a broad range of wavelengths. The ability of a single holographic interface to simultaneously shape the amplitude, phase, and polarization of light can find widespread applications in photonics.

259 citations

Journal ArticleDOI
Mark E. Lucente1
01 May 1997
TL;DR: Only a real-time electronic holographic ("holovideo") display can create a truly 3D computer graphics image with all of the depth cues and resolution sufficient to provide extreme realism.
Abstract: Computer graphics is confined chiefly to flat images. Images may look three-dimensional (3D), and sometimes create the illusion of 3D when displayed, for example, on a stereoscopic display [16, 13, 12]. Nevertheless, when viewing an image on most display systems, the human visual system (HVS) sees a flat plane of pixels. Volumetric displays can create a 3D computer graphics image, but fail to provide many visual depth cues (e.g. shading texture gradients) and cannot provide the powerful depth cue of overlap (occlusion). Discrete parallax displays (such as lenticular displays) promise to create 3D images with all of the depth cues, but are limited by achievable resolution. Only a real-time electronic holographic ("holovideo") display [11, 6, 8, 7, 9, 21, 22, 20, 2] can create a truly 3D computer graphics image with all of the depth cues (motion parallax, ocular accommodation, occlusion, etc.) and resolution sufficient to provide extreme realism [13]. Holovideo displays promise to enhance numerous applications in the creation and manipulation of information, including telepresence, education, medical imaging, interactive design and scientific visualization.The technology of electronic interactive three-dimensional holographic displays is in its first decade. Though fancied in popular science fiction, only recently have researchers created the first real holovideo systems by confronting the two basic requirements of electronic holography: computational speed and high-bandwidth modulation of visible light. This article describes the approaches used to address these problems, as well as emerging technologies and techniques that provide firm footing for the development of practical holovideo.

127 citations

Journal ArticleDOI
04 Feb 2011
TL;DR: It is demonstrated that either laser or light-emitting diode (LED) illumination is feasible, and Multi-SLM designs, especially over curved surfaces, relieve high bandwidth requirements, and therefore, are strong candidates for futuristic holographic video displays.
Abstract: Holography aims to record and regenerate volume filling light fields to reproduce ghost-like 3-D images that are optically indistinguishable from their physical 3-D originals. Digital holographic video displays are pixelated devices on which digital holograms can be written at video rates. Spatial light modulators (SLMs) are used for such purposes in practice; even though it is desirable to have SLMs that can modulate both the phase and amplitude of the incident light at each pixel, usually amplitude-only or phase-only SLMs are available. Many laboratories have reported working prototypes using different designs. Size and resolution of the SLMs are quite demanding for satisfactory 3-D reconstructions. Space-bandwidth product (SBP) seems like a good metric for quality analysis. Even though moderate SBP is satisfactory for a stationary observer with no lateral or rotational motion, the required SBP quickly increases when such motion is allowed. Multi-SLM designs, especially over curved surfaces, relieve high bandwidth requirements, and therefore, are strong candidates for futuristic holographic video displays. Holograms are quite robust to noise and quantization. It is demonstrated that either laser or light-emitting diode (LED) illumination is feasible. Current research momentum is increasing with many exciting and encouraging results.

126 citations