scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Optical Images of an Exosolar Planet 25 Light-Years from Earth

TL;DR: Optical observations of an exoplanet candidate, Fomalhaut b, show that the planet's mass is at most three times that of Jupiter; a higher mass would lead to gravitational disruption of the belt, matching predictions of its location.
Abstract: Fomalhaut is a bright star 7.7 parsecs (25 light years) from Earth that harbors a belt of cold dust with a structure consistent with gravitational sculpting by an orbiting planet. Here, we present optical observations of an exoplanet candidate, Fomalhaut b. In the plane of the belt, Fomalhaut b lies approximately 119 astronomical units (AU) from the star and 18 AU from the dust belt, matching predictions. We detect counterclockwise orbital motion using Hubble Space Telescope observations separated by 1.73 years. Dynamical models of the interaction between the planet and the belt indicate that the planet's mass is at most three times that of Jupiter for the belt to avoid gravitational disruption. The flux detected at 0.8 m is also consistent with that of a planet with mass no greater than a few times that of Jupiter. The brightness at 0.6 micron and the lack of detection at longer wavelengths suggest that the detected flux may include starlight reflected off a circumplanetary disk, with dimension comparable to the orbits of the Galilean satellites. We also observed variability of unknown origin at 0.6 micron.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
28 Nov 2008-Science
TL;DR: High-contrast observations with the Keck and Gemini telescopes have revealed three planets orbiting the star HR 8799, with projected separations of 24, 38, and 68 astronomical units.
Abstract: Direct imaging of exoplanetary systems is a powerful technique that can reveal Jupiter-like planets in wide orbits, can enable detailed characterization of planetary atmospheres, and is a key step toward imaging Earth-like planets. Imaging detections are challenging because of the combined effect of small angular separation and large luminosity contrast between a planet and its host star. High-contrast observations with the Keck and Gemini telescopes have revealed three planets orbiting the star HR 8799, with projected separations of 24, 38, and 68 astronomical units. Multi-epoch data show counter clockwise orbital motion for all three imaged planets. The low luminosity of the companions and the estimated age of the system imply planetary masses between 5 and 13 times that of Jupiter. This system resembles a scaled-up version of the outer portion of our solar system.

1,966 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarize the current empirical knowledge of stellar multiplicity for Main Sequence stars and brown dwarfs, as well as among populations of Pre-Main Sequence stars, and embedded protostars.
Abstract: Stellar multiplicity is an ubiquitous outcome of the star formation process Characterizing the frequency and main characteristics of multiple systems and their dependencies on primary mass and environment is therefore a powerful tool to probe this process While early attempts were fraught with selection biases and limited completeness, instrumentation breakthroughs in the last two decades now enable robust analyses In this review, we summarize our current empirical knowledge of stellar multiplicity for Main Sequence stars and brown dwarfs, as well as among populations of Pre-Main Sequence stars and embedded protostars Clear trends as a function of both primary mass and stellar evolutionary stage are identified that will serve as a comparison basis for numerical and analytical models of star formation

1,261 citations


Cites background from "Optical Images of an Exosolar Plane..."

  • ...In this context, we note the existence of a handful of planetary-mass objects around intermediate-mass stars (Kalas et al. 2008, Marois et al. 2008) but an apparent dearth of companions around the substellar limit (Janson et al. 2011, Vigan et al. 2012)....

    [...]

Journal ArticleDOI
02 Jul 2010-Science
TL;DR: It is shown that the ~10-million-year-oldβ Pictoris system hosts a massive giant planet, β Pictoris b, located 8 to 15 astronomical units from the star, which confirms that gas giant planets form rapidly within disks and validates the use of disk structures as fingerprints of embedded planets.
Abstract: Here, we show that the ~10-million-year-old β Pictoris system hosts a massive giant planet, β Pictoris b, located 8 to 15 astronomical units from the star. This result confirms that gas giant planets form rapidly within disks and validates the use of disk structures as fingerprints of embedded planets. Among the few planets already imaged, β Pictoris b is the closest to its parent star. Its short period could allow for recording of the full orbit within 17 years.

973 citations

Journal ArticleDOI
TL;DR: In this article, the authors present new and archival high angular resolution (03 40-75 AU) Submillimeter Array (SMA) observations of the 880 μm (340 GHz) dust continuum emission from 12 transition disks in nearby star-forming regions.
Abstract: Circumstellar disks are thought to experience a rapid transition phase in their evolution that can have a considerable impact on the formation and early development of planetary systems. We present new and archival high angular resolution (03 40-75 AU) Submillimeter Array (SMA) observations of the 880 μm (340 GHz) dust continuum emission from 12 such transition disks in nearby star-forming regions. In each case, we directly resolve a dust-depleted disk cavity around the central star. Using two-dimensional Monte Carlo radiative transfer calculations, we interpret these dust disk structures in a homogeneous, parametric model framework by reproducing their SMA continuum visibilities and spectral energy distributions. The cavities in these disks are large (R cav = 15-73 AU) and substantially depleted of small (~μm-sized) dust grains, although their mass contents are still uncertain. The structures of the remnant material at larger radii are comparable to normal disks. We demonstrate that these large cavities are relatively common among the millimeter-bright disk population, comprising at least 1 in 5 (20%) of the disks in the bright half (and ≥26% of the upper quartile) of the millimeter luminosity (disk mass) distribution. Utilizing these results, we assess some of the physical mechanisms proposed to account for transition disk structures. As has been shown before, photoevaporation models do not produce the large cavity sizes, accretion rates, and disk masses representative of this sample. A sufficient decrease of the dust optical depths in these cavities by particle growth would be difficult to achieve: substantial growth (to meter sizes or beyond) must occur in large (tens of AU) regions of low turbulence without also producing an abundance of small particles. Given those challenges, we suggest instead that the observations are most commensurate with dynamical clearing due to tidal interactions with low-mass companions—very young (~1 Myr) brown dwarfs or giant planets on long-period orbits.

779 citations


Cites background from "Optical Images of an Exosolar Plane..."

  • ...Moreover, those companions would provide youthful touchstones that could help facilitate a better understanding of their much older counterparts, including the Fomalhaut and HR 8799 planets that orbit just inside their own remnant debris disk rings (Kalas et al. 2008; Marois et al. 2008, 2010)....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors measured the accretion rate onto seed masses ranging from a large planetesimal to a fully grown 10-Earth-mass core and test different particle sizes, concluding that pebble accretion can resolve the long-standing core accretion timescale conflict.
Abstract: The observed lifetimes of gaseous protoplanetary discs place strong constraints on gas and ice giant formation in the core accretion scenario. The approximately 10-Earth-mass solid core responsible for the attraction of the gaseous envelope has to form before gas dissipation in the protoplanetary disc is completed within 1–10 million years. Building up the core by collisions between km-sized planetesimals fails to meet this timescale constraint, especially at wide stellar separations. Nonetheless, gas-giant planets are detected by direct imaging at wide orbital distances. In this paper, we numerically study the growth of cores by the accretion of cm-sized pebbles loosely coupled to the gas. We measure the accretion rate onto seed masses ranging from a large planetesimal to a fully grown 10-Earth-mass core and test different particle sizes. The numerical results are in good agreement with our analytic expressions, indicating the existence of two accretion regimes, one set by the azimuthal and radial particle drift for the lower seed masses and the other, for higher masses, by the velocity at the edge of the Hill sphere. In the former, the optimally accreted particle size increases with core mass, while in the latter the optimal size is centimeters, independent of core mass. We discuss the implications for rapid core growth of gas-giant and ice-giant cores. We conclude that pebble accretion can resolve the long-standing core accretion timescale conflict. This requires a near-unity dust-to-gas ratio in the midplane, particle growth to mm and cm and the formation of massive planetesimals or low radial pressure support. The core growth timescale is shortened by a factor 30–1000 at 5 AU and by a factor 100–10 000 at 50 AU, compared to the gravitationally focused accretion of, respectively, low-scale-height planetesimal fragments or standard km-sized planetesimals.

769 citations


Cites background from "Optical Images of an Exosolar Plane..."

  • ...Fomalhaut b detected in reflected visble light (Kalas et al. 2008), with an upper mass below 1 MJ (Janson et al. 2012), is located far from the central start at approximately 120 AU....

    [...]

References
More filters
01 Jan 1999
TL;DR: In this paper, the two-body problem and the restricted three body problem are considered. But the disturbing function is defined as a special case of the two body problem and is not considered in this paper.
Abstract: Preface 1. Structure of the solar system 2. The two-body problem 3. The restricted three-body problem 4. Tides, rotation and shape 5. Spin-orbit coupling 6. The disturbing function 7. Secular perturbations 8. Resonant perturbations 9. Chaos and long-term evolution 10. Planetary rings Appendix A. Solar system data Appendix B. Expansion of the disturbing function Index.

2,132 citations

Journal ArticleDOI
TL;DR: In this article, an integro-differential equation describing the evolution of a system of particles undergoing inelastic collisions and fragmentation is derived and solved for steady-state conditions.
Abstract: A model for colliding objects in the asteroidal belt is formulated. An integro-differential equation describing the evolution of a system of particles undergoing inelastic collisions and fragmentation is derived and solved for steady-state conditions. It is found that the number density of particles per unit volume in the mass range m to m + dm is Am−a dm, where A and α are constants (provided that certain conditions are satisfied). The population index α can then be derived theoretically; for asteroids and their debris, α = 1.837, in agreement with an empirical fit to the observed distribution. Various statistical properties of the distribution can be derived from the model. It is found that, for asteroidal objects, catastrophic collisions constitute the most important physical process determining particle lifetimes and the form of the particle distribution for particles sufficiently large that radiation effects are unimportant. The lifetime of the largest asteroids is found to be of the same order of magnitude as the probable lifetime of the solar system; therefore, some of the largest asteroids may have survived since the time of creation, whereas most smaller ones have not and are collisional fragments, according to the present model.

1,182 citations

Journal ArticleDOI
TL;DR: In this article, the resonance overlap criterion for the onset of stochastic behavior was applied to the planar circular-restricted three-body problem with small mass ratio (mu), and its predictions for mu = 0.001, 0.0001, and 0.00001 were compared to the transitions observed in the numerically determined Kolmogorov-Sinai entropy and found to be in remarkably good agreement.
Abstract: The resonance overlap criterion for the onset of stochastic behavior is applied to the planar circular-restricted three-body problem with small mass ratio (mu). Its predictions for mu = 0.001, 0.0001, and 0.00001 are compared to the transitions observed in the numerically determined Kolmogorov-Sinai entropy and found to be in remarkably good agreement. In addition, an approximate scaling law for the onset of stochastic behavior is derived.

488 citations

Journal ArticleDOI
23 Jun 2005-Nature
TL;DR: The sharp inner edge and offset demonstrate the presence of planetary-mass objects orbiting Fomalhaut, demonstrating the structure of a dusty disk modified by the gravitational influence of planets.
Abstract: In 1983 the IRAS orbiting satellite detected excess infrared radiation from the direction of Fomalhaut, a first magnitude star in the otherwise dim constellation Piscis Austrinus. It was radiation from a huge dusty disk around the star, about four times the size of our Solar System. The Advanced Camera for Surveys onboard the Hubble Space Telescope has now detected Fomalhaut's dust complex at high resolution at optical wavelengths. The disk is offset from the star in a way that suggests the presence of several planets. The debris disks around Beta Pictoris and AU Microscopii are both edge-on, and the disk around HR 4796A has a small radius. So the Fomalhaut disk, seen on a slope rather like the ring around Saturn, older than the others and closer to us, may become the disk of choice for the study of planet formation. The Sun and >15 per cent of nearby stars are surrounded by dusty disks that must be collisionally replenished by asteroids and comets, as the dust would otherwise be depleted on timescales <107 years (ref. 1). Theoretical studies show that the structure of a dusty disk can be modified by the gravitational influence of planets2,3,4, but the observational evidence is incomplete, at least in part because maps of the thermal infrared emission from the disks have low linear resolution (35 au in the best case5). Optical images provide higher resolution, but the closest examples (AU Mic and β Pic) are edge-on6,7, preventing the direct measurement of the azimuthal and radial disk structure that is required for fitting theoretical models of planetary perturbations. Here we report the detection of optical light reflected from the dust grains orbiting Fomalhaut (HD 216956). The system is inclined 24° away from edge-on, enabling the measurement of disk structure around its entire circumference, at a linear resolution of 0.5 au. The dust is distributed in a belt 25 au wide, with a very sharp inner edge at a radial distance of 133 au, and we measure an offset of 15 au between the belt's geometric centre and Fomalhaut. Taken together, the sharp inner edge and offset demonstrate the presence of planetary-mass objects orbiting Fomalhaut.

458 citations

Journal ArticleDOI
TL;DR: In this paper, the authors argue that the strong emission lines of T Tauri stars are generally produced in infalling envelopes, using simple models of infall constrained to a dipolar magnetic field geometry.
Abstract: We argue that the strong emission lines of T Tauri stars are generally produced in infalling envelopes. Simple models of infall constrained to a dipolar magnetic field geometry explain many peculiarities of observed line profiles that are difficult, if not impossible, to reproduce with wind models. Radiative transfer effects explain why certain lines can appear quite symmetric while other lines simultaneously exhibit inverse P Cygni profiles, without recourse to complicated velocity fields. The success of the infall models in accounting for qualitative features of observed line profiles supports the proposal that stellar magnetospheres disrupt disk accretion in T Tauri stars, that true boundary layers are not usually present in T Tauri stars, and that the observed 'blue veiling' emission arises from the base of the magnetospheric accretion column.

454 citations