scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Optical lens compression via transformation optics

14 Sep 2009-Optics Express (Opt Express)-Vol. 17, Iss: 19, pp 16535-16542
TL;DR: Though transformation optical media are generally anisotropic, with both electric and magnetic response, it is possible to arrive at a dielectric-only transformation optical distribution for a lens interacting with transverse-magnetic (TM) polarized light.
Abstract: Transformation optics is widely associated with the design of unconventional electromagnetic devices, such as electromagnetic cloaks or concentrators. However, a wide range of conventional optical devices with potentially advantageous properties can be designed by the transformation optical approach. For example, a coordinate transformation can be introduced that compresses a region of space, resulting in an overall decrease in the thickness of an optical instrument such as a lens. The optical properties of a transformed lens, such as Fresnel reflection or aberration profile, are equivalent to those of the original lens, while the transformed lens and the bounding transformation optical material are thinner than the original lens. This approach to flattening the profile of a lens represents an advantage over the use of a higher dielectric material because it does not introduce greater Fresnel reflections or require a redesign of the basic optic. Though transformation optical media are generally anisotropic, with both electric and magnetic response, it is possible to arrive at a dielectric-only transformation optical distribution for a lens interacting with transverse-magnetic (TM) polarized light. The dielectric-only distribution can be implemented using broad-band, low-loss metamaterials. Lens designs for both a full transformation and a dielectric-only implementation are discussed and confirmed via finite-element simulations.
Citations
More filters
Journal ArticleDOI
TL;DR: The potential of transformation optics to create functionalities in which the optical properties can be designed almost at will is reviewed, which can be used to engineer various optical illusion effects, such as the invisibility cloak.
Abstract: Transformation optics describes the capability to design the path of light waves almost at will through the use of metamaterials that control effective materials properties on a subwavelength scale. In this review, the physics and applications of transformation optics are discussed.

1,085 citations

Journal ArticleDOI
TL;DR: It is demonstrated how powerful emerging techniques in the field of transformation optics can be used to harness the flexibility of gradient index materials for imaging applications to achieve a new class of optical devices.
Abstract: One of the more promising uses of metamaterials is in imaging, where the capability to control the propagation of light could lead to new applications. In particular, the realization of a broadband metamaterial lens that has an almost complete hemispherical field of view that is focused on a flat plane represents a significant step towards such new uses.

613 citations

Journal ArticleDOI
TL;DR: It is shown that a laminar liquid flow in an optofluidic channel exhibits spatially variable dielectric properties that support novel wave-focussing and interference phenomena, which are distinctively different from the discrete diffraction observed in solid waveguide arrays.
Abstract: Transformation optics represents a new paradigm for designing light-manipulating devices, such as cloaks and field concentrators, through the engineering of electromagnetic space using materials with spatially variable parameters. Here we analyse liquid flowing in an optofluidic waveguide as a new type of controllable transformation optics medium. We show that a laminar liquid flow in an optofluidic channel exhibits spatially variable dielectric properties that support novel wave-focussing and interference phenomena, which are distinctively different from the discrete diffraction observed in solid waveguide arrays. Our work provides new insight into the unique optical properties of optofluidic waveguides and their potential applications.

164 citations

Journal ArticleDOI
TL;DR: In this paper, a method using discrete coordinate transformation is proposed, which allows the conversion of conventional devices with curved shapes into flat systems, while preserving their non-dispersive, isotropic, broadband, and lossless properties.
Abstract: Transformation electromagnetics provides a practical approach to control electromagnetic fields at will. Based on this principle, novel devices such as the invisible cloak have been proposed. Here we examine the extension of this technique as applied to the design of flat devices in antenna systems. A method using discrete coordinate transformation is proposed, which allows the conversion of conventional devices with curved shapes into flat systems, while preserving their non-dispersive, isotropic, broadband, and lossless properties. Two specific design examples, a flat reflector and a flat lens embedded in free space, are presented. To avoid the loss and narrow bandwidth issues typically present in metamaterials, appropriate approximations and simplifications are introduced to make the all-dielectric devices, which are more practical to build. It is also shown that the discrete coordinate transformation is valid for both the E and H polarizations, as long as the local coordinates of the system remain near-orthogonal. Finite-Difference Time-Domain simulations are used to verify the performances of these designs, and show that the all-dielectric devices have similar broadband performances compared to the conventional ones, while possessing the advantages of flat profiles and small volumes.

131 citations


Cites background from "Optical lens compression via transf..."

  • ...Certain types of flat lenses have been previously proposed [23], [ 24 ]....

    [...]

Patent
David R. Smith1, Ruopeng Liu1, Tie Jun Cui1, Qiang Cheng1, Jonah N. Gollub1 
21 Aug 2009
TL;DR: In this paper, Babinet complements of split ring resonator (SRR) and electric LC (ELC) metamaterial elements are embedded in the bounding surfaces of planar waveguides, e.g. for beam steering/focusing devices, antenna array feed structures, etc.
Abstract: Complementary metamaterial elements provide an effective permittivity and/or permeability for surface structures and/or waveguide structures. The complementary metamaterial resonant elements may include Babinet complements of "split ring resonator" (SRR) and "electric LC" (ELC) metamaterial elements. In some approaches, the complementary metamaterial elements are embedded in the bounding surfaces of planar waveguides, e.g. to implement waveguide based gradient index lenses for beam steering/focusing devices, antenna array feed structures, etc..

122 citations

References
More filters
Journal ArticleDOI
23 Jun 2006-Science
TL;DR: This work shows how electromagnetic fields can be redirected at will and proposes a design strategy that has relevance to exotic lens design and to the cloaking of objects from electromagnetic fields.
Abstract: Using the freedom of design that metamaterials provide, we show how electromagnetic fields can be redirected at will and propose a design strategy. The conserved fields-electric displacement field D, magnetic induction field B, and Poynting vector B-are all displaced in a consistent manner. A simple illustration is given of the cloaking of a proscribed volume of space to exclude completely all electromagnetic fields. Our work has relevance to exotic lens design and to the cloaking of objects from electromagnetic fields.

7,811 citations

Journal ArticleDOI
10 Nov 2006-Science
TL;DR: This work describes here the first practical realization of a cloak of invisibility, constructed with the use of artificially structured metamaterials, designed for operation over a band of microwave frequencies.
Abstract: A recently published theory has suggested that a cloak of invisibility is in principle possible, at least over a narrow frequency band. We describe here the first practical realization of such a cloak; in our demonstration, a copper cylinder was "hidden" inside a cloak constructed according to the previous theoretical prescription. The cloak was constructed with the use of artificially structured metamaterials, designed for operation over a band of microwave frequencies. The cloak decreased scattering from the hidden object while at the same time reducing its shadow, so that the cloak and object combined began to resemble empty space.

6,830 citations

Journal ArticleDOI
23 Jun 2006-Science
TL;DR: A general recipe for the design of media that create perfect invisibility within the accuracy of geometrical optics is developed, which can be applied to escape detection by other electromagnetic waves or sound.
Abstract: An invisibility device should guide light around an object as if nothing were there, regardless of where the light comes from. Ideal invisibility devices are impossible, owing to the wave nature of light. This study develops a general recipe for the design of media that create perfect invisibility within the accuracy of geometrical optics. The imperfections of invisibility can be made arbitrarily small to hide objects that are much larger than the wavelength. With the use of modern metamaterials, practical demonstrations of such devices may be possible. The method developed here can also be applied to escape detection by other electromagnetic waves or sound.

3,850 citations

Journal ArticleDOI
TL;DR: It is shown here that a modification of the standard S-parameter retrieval procedure yields physically reasonable values for the retrieved electromagnetic parameters, even when there is significant inhomogeneity within the unit cell of the structure.
Abstract: We discuss the validity of standard retrieval methods that assign bulk electromagnetic properties, such as the electric permittivity « and the magnetic permeability m, from calculations of the scattering sSd parameters for finite-thickness samples. S-parameter retrieval methods have recently become the principal means of characterizing artificially structured metamaterials, which, by nature, are inherently inhomogeneous. While the unit cell of a metamaterial can be made considerably smaller than the free space wavelength, there remains a significant variation of the phase across the unit cell at operational frequencies in nearly all metamaterial structures reported to date. In this respect, metamaterials do not rigorously satisfy an effective medium limit and are closer conceptually to photonic crystals. Nevertheless, we show here that a modification of the standard S-parameter retrieval procedure yields physically reasonable values for the retrieved electromagnetic parameters, even when there is significant inhomogeneity within the unit cell of the structure. We thus distinguish a metamaterial regime, as opposed to the effective medium or photonic crystal regimes, in which a refractive index can be rigorously established but where the wave impedance can only be approximately defined. We present numerical simulations on typical metamaterial structures to illustrate the modified retrieval algorithm and the impact on the retrieved material parameters. We find that no changes to the standard retrieval procedures are necessary when the inhomogeneous unit cell is symmetric along the propagation axis; however, when the unit cell does not possess this symmetry, a modified procedure—in which a periodic structure is assumed—is required to obtain meaningful electromagnetic material parameters. DOI: 10.1103/PhysRevE.71.036617

2,565 citations

Journal ArticleDOI
TL;DR: This work presents the design of a non-magnetic cloak operating at optical frequencies, and the principle and structure of the proposed cylindrical cloak are analysed and the general recipe for the implementation of such a device is provided.
Abstract: Artificially structured metamaterials have enabled unprecedented flexibility in manipulating electromagnetic waves and producing new functionalities, including the cloak of invisibility based on coordinate transformation1,2,3. Unlike other cloaking approaches4,5,6, which are typically limited to subwavelength objects, the transformation method allows the design of cloaking devices that render a macroscopic object invisible. In addition, the design is not sensitive to the object that is being cloaked. The first experimental demonstration of such a cloak at microwave frequencies was recently reported7. We note, however, that that design7 cannot be implemented for an optical cloak, which is certainly of particular interest because optical frequencies are where the word ‘invisibility’ is conventionally defined. Here we present the design of a non-magnetic cloak operating at optical frequencies. The principle and structure of the proposed cylindrical cloak are analysed, and the general recipe for the implementation of such a device is provided.

1,953 citations