scispace - formally typeset
Journal ArticleDOI

Optical Spectroscopy Investigation of the Structural and Electrical Evolution of Controllably Oxidized Graphene by a Solution Method

04 May 2012-Journal of Physical Chemistry C (American Chemical Society)-Vol. 116, Iss: 19, pp 10702-10707

...read more


Citations
More filters
Journal ArticleDOI

[...]

01 Mar 2013-Carbon
TL;DR: In this article, the formation of different types of oxygen containing functional groups in GO and their influences on its structure were analyzed using X-ray diffraction (XRD), Fourier transform infra-red spectra, x-ray photoelectron spectra (XPS), zeta potential analysis and Raman spectroscopy.
Abstract: Graphene oxide (GO) with various degrees of oxidation was synthesized using a modified Hummers method. The formation of different types of oxygen containing functional groups in GO, and their influences on its structure were analyzed using X-ray diffraction (XRD), Fourier transform infra-red spectra, X-ray photoelectron spectra (XPS), zeta potential analysis and Raman spectroscopy. XRD studies showed a disruption of the graphitic AB stacking order during the increase in oxidation levels. XPS analysis revealed the formation of hydroxyl and carboxyl groups at lower oxidation levels and epoxide groups at higher oxidation levels. The influence of the oxidation degree on the properties of GO was evaluated by zeta potential analysis, which showed a linear increase in the zeta potential with increasing oxidation levels. Raman spectroscopy analysis revealed that increasing oxidation levels results in a transition from a crystalline to an amorphous structure. The electrochemical properties of GO is highly influenced by the variation in degree of oxidation. Our results suggest that the properties of GO can be tuned by varying the oxidation degree, which may pave the way to new developments in the GO-based applications.

1,095 citations


Cites background from "Optical Spectroscopy Investigation ..."

  • [...]

Journal ArticleDOI

[...]

TL;DR: The ability to tune the selectivity of graphene through controlled generation of subnanometer pores addresses a significant challenge in the development of advanced nanoporous graphene membranes for nanofiltration, desalination, gas separation, and other applications.
Abstract: We report selective ionic transport through controlled, high-density, subnanometer diameter pores in macroscopic single-layer graphene membranes. Isolated, reactive defects were first introduced into the graphene lattice through ion bombardment and subsequently enlarged by oxidative etching into permeable pores with diameters of 0.40 ± 0.24 nm and densities exceeding 1012 cm–2, while retaining structural integrity of the graphene. Transport measurements across ion-irradiated graphene membranes subjected to in situ etching revealed that the created pores were cation-selective at short oxidation times, consistent with electrostatic repulsion from negatively charged functional groups terminating the pore edges. At longer oxidation times, the pores allowed transport of salt but prevented the transport of a larger organic molecule, indicative of steric size exclusion. The ability to tune the selectivity of graphene through controlled generation of subnanometer pores addresses a significant challenge in the dev...

609 citations

Journal ArticleDOI

[...]

11 Apr 2013-ACS Nano
TL;DR: A well-defined graphene pattern is demonstrated by using ozone photolithography, in which the ozone-treated graphene electrodes are monolithic but separated by insulating GO regions, indicating the promising use of ozone treatment to achieve high-performance graphene-based optoelectronic devices.
Abstract: Tunable electrical and optical properties of graphene are vital to promote its use as film electrodes in a variety of devices. We developed an etching-free ozone treatment method to continuously tune the electrical resistance and optical transmittance of graphene films by simply varying the time and temperature of graphene exposure to ozone. Initially, ozone exposure dramatically decreases the electrical resistance of graphene films by p-doping, but this is followed by increases in the resistance and optical transmittance as a result of surface oxidation. The rate of resistance increase can be significantly increased by raising the treatment temperature. The ozone-oxidized graphene is not removed but is gradually transformed to graphene oxide (GO). On the basis of such effects of ozone treatment, we demonstrate a well-defined graphene pattern by using ozone photolithography, in which the ozone-treated graphene electrodes are monolithic but separated by insulating GO regions. Such a monolithic graphene pat...

82 citations

Journal ArticleDOI

[...]

TL;DR: An electrochemical approach involving phenyl-diazonium salts is used to systematically probe electronic modification in MLG and BLG with increasing functionalization for the first time, obtaining the highest conversion values to date.
Abstract: A central question in graphene chemistry is to what extent chemical modification can control an electronically accessible band gap in monolayer and bilayer graphene (MLG and BLG). Density functional theory predicts gaps in covalently functionalized graphene as high as 2 eV, while this approach neglects the fact that lattice symmetry breaking occurs over only a prescribed radius of nanometer dimension, which we label the S-region. Therefore, high chemical conversion is central to observing this band gap in transport. We use an electrochemical approach involving phenyl-diazonium salts to systematically probe electronic modification in MLG and BLG with increasing functionalization for the first time, obtaining the highest conversion values to date. We find that both MLG and BLG retain their relatively high conductivity after functionalization even at high conversion, as mobility losses are offset by increases in carrier concentration. For MLG, we find that band gap opening as measured during transport is lin...

60 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, the molecular theory of graphene oxide is applied to graphene oxide, which considers its oxide as a final product in a succession of polyderivatives related to a series of oxidation reactions involving different oxidants.
Abstract: Applied to graphene oxide, the molecular theory of graphene considers its oxide as a final product in the succession of polyderivatives related to a series of oxidation reactions involving different oxidants. The graphene oxide structure is created in the course of a stepwise computational synthesis of polyoxides of the (5,5) nanographene molecule governed by an algorithm that takes into account the molecule’s natural radicalization due to the correlation of its odd electrons, the extremely strong influence of the structure on properties, and a sharp response of the molecule behavior on small actions of external factors. Taking these together, the theory has allowed for a clear, transparent and understandable explanation of the hot points of graphene oxide chemistry and suggesting reliable models of both chemically produced and chemically reduced graphene oxides.

36 citations


References
More filters
Journal ArticleDOI

[...]

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

32,822 citations

PatentDOI

[...]

24,775 citations

Journal ArticleDOI

[...]

TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Abstract: Graphene is the two-dimensional building block for carbon allotropes of every other dimensionality We show that its electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers The D peak second order changes in shape, width, and position for an increasing number of layers, reflecting the change in the electron bands via a double resonant Raman process The G peak slightly down-shifts This allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area

12,229 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, a model and theoretical understanding of the Raman spectra in disordered and amorphous carbon is given, and the nature of the G and D vibration modes in graphite is analyzed in terms of the resonant excitation of \ensuremath{\pi} states and the long-range polarizability of the long range bonding.
Abstract: The model and theoretical understanding of the Raman spectra in disordered and amorphous carbon are given. The nature of the G and D vibration modes in graphite is analyzed in terms of the resonant excitation of \ensuremath{\pi} states and the long-range polarizability of \ensuremath{\pi} bonding. Visible Raman data on disordered, amorphous, and diamondlike carbon are classified in a three-stage model to show the factors that control the position, intensity, and widths of the G and D peaks. It is shown that the visible Raman spectra depend formally on the configuration of the ${\mathrm{sp}}^{2}$ sites in ${\mathrm{sp}}^{2}$-bonded clusters. In cases where the ${\mathrm{sp}}^{2}$ clustering is controlled by the ${\mathrm{sp}}^{3}$ fraction, such as in as-deposited tetrahedral amorphous carbon (ta-C) or hydrogenated amorphous carbon (a-C:H) films, the visible Raman parameters can be used to derive the ${\mathrm{sp}}^{3}$ fraction.

11,122 citations

Journal ArticleDOI

[...]

TL;DR: Raman spectra are reported from single crystals of graphite and other graphite materials as mentioned in this paper, and the Raman intensity of this band is inversely proportional to the crystallite size and is caused by a breakdown of the k-selection rule.
Abstract: Raman spectra are reported from single crystals of graphite and other graphite materials. Single crystals of graphite show one single line at 1575 cm−1. For the other materials like stress‐annealed pyrolitic graphite, commercial graphites, activated charcoal, lampblack, and vitreous carbon another line is detected at 1355 cm−1. The Raman intensity of this band is inversely proportional to the crystallite size and is caused by a breakdown of the k‐selection rule. The intensity of this band allows an estimate of the crystallite size in the surface layer of any carbon sample. Two in‐plane force constants are calculated from the frequencies.

8,646 citations



Trending Questions (1)
What is the principle behind the graphene computer chip?

The process of solution modification may provide a facile method to tailor the electrical properties of graphene on a chip for constructing carbon-based nanoelectronics.