scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Optimal approximations by piecewise smooth functions and associated variational problems

01 Jul 1989-Communications on Pure and Applied Mathematics (Wiley-Blackwell)-Vol. 42, Iss: 5, pp 577-685
TL;DR: In this article, the authors introduce and study the most basic properties of three new variational problems which are suggested by applications to computer vision, and study their application in computer vision.
Abstract: : This reprint will introduce and study the most basic properties of three new variational problems which are suggested by applications to computer vision. In computer vision, a fundamental problem is to appropriately decompose the domain R of a function g (x,y) of two variables. This problem starts by describing the physical situation which produces images: assume that a three-dimensional world is observed by an eye or camera from some point P and that g1(rho) represents the intensity of the light in this world approaching the point sub 1 from a direction rho. If one has a lens at P focusing this light on a retina or a film-in both cases a plane domain R in which we may introduce coordinates x, y then let g(x,y) be the strength of the light signal striking R at a point with coordinates (x,y); g(x,y) is essentially the same as sub 1 (rho) -possibly after a simple transformation given by the geometry of the imaging syste. The function g(x,y) defined on the plane domain R will be called an image. What sort of function is g? The light reflected off the surfaces Si of various solid objects O sub i visible from P will strike the domain R in various open subsets R sub i. When one object O1 is partially in front of another object O2 as seen from P, but some of object O2 appears as the background to the sides of O1, then the open sets R1 and R2 will have a common boundary (the 'edge' of object O1 in the image defined on R) and one usually expects the image g(x,y) to be discontinuous along this boundary. (JHD)

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This work treats image segmentation as a graph partitioning problem and proposes a novel global criterion, the normalized cut, for segmenting the graph, which measures both the total dissimilarity between the different groups as well as the total similarity within the groups.
Abstract: We propose a novel approach for solving the perceptual grouping problem in vision. Rather than focusing on local features and their consistencies in the image data, our approach aims at extracting the global impression of an image. We treat image segmentation as a graph partitioning problem and propose a novel global criterion, the normalized cut, for segmenting the graph. The normalized cut criterion measures both the total dissimilarity between the different groups as well as the total similarity within the groups. We show that an efficient computational technique based on a generalized eigenvalue problem can be used to optimize this criterion. We applied this approach to segmenting static images, as well as motion sequences, and found the results to be very encouraging.

13,789 citations

Journal ArticleDOI
TL;DR: A new definition of scale-space is suggested, and a class of algorithms used to realize a diffusion process is introduced, chosen to vary spatially in such a way as to encourage intra Region smoothing rather than interregion smoothing.
Abstract: A new definition of scale-space is suggested, and a class of algorithms used to realize a diffusion process is introduced. The diffusion coefficient is chosen to vary spatially in such a way as to encourage intraregion smoothing rather than interregion smoothing. It is shown that the 'no new maxima should be generated at coarse scales' property of conventional scale space is preserved. As the region boundaries in the approach remain sharp, a high-quality edge detector which successfully exploits global information is obtained. Experimental results are shown on a number of images. Parallel hardware implementations are made feasible because the algorithm involves elementary, local operations replicated over the image. >

12,560 citations

Proceedings ArticleDOI
17 Jun 1997
TL;DR: This work treats image segmentation as a graph partitioning problem and proposes a novel global criterion, the normalized cut, for segmenting the graph, which measures both the total dissimilarity between the different groups as well as the total similarity within the groups.
Abstract: We propose a novel approach for solving the perceptual grouping problem in vision. Rather than focusing on local features and their consistencies in the image data, our approach aims at extracting the global impression of an image. We treat image segmentation as a graph partitioning problem and propose a novel global criterion, the normalized cut, for segmenting the graph. The normalized cut criterion measures both the total dissimilarity between the different groups as well as the total similarity within the groups. We show that an efficient computational technique based on a generalized eigenvalue problem can be used to optimize this criterion. We have applied this approach to segmenting static images and found results very encouraging.

11,827 citations


Cites background from "Optimal approximations by piecewise..."

  • ...While most of these ideas go back to the 1970s (and earlier), the 1980s brought in the use of Markov Random Fields [10] and variational formulations [ 17 ], [2], [14]....

    [...]

Journal ArticleDOI
TL;DR: A new model for active contours to detect objects in a given image, based on techniques of curve evolution, Mumford-Shah (1989) functional for segmentation and level sets is proposed, which can detect objects whose boundaries are not necessarily defined by the gradient.
Abstract: We propose a new model for active contours to detect objects in a given image, based on techniques of curve evolution, Mumford-Shah (1989) functional for segmentation and level sets. Our model can detect objects whose boundaries are not necessarily defined by the gradient. We minimize an energy which can be seen as a particular case of the minimal partition problem. In the level set formulation, the problem becomes a "mean-curvature flow"-like evolving the active contour, which will stop on the desired boundary. However, the stopping term does not depend on the gradient of the image, as in the classical active contour models, but is instead related to a particular segmentation of the image. We give a numerical algorithm using finite differences. Finally, we present various experimental results and in particular some examples for which the classical snakes methods based on the gradient are not applicable. Also, the initial curve can be anywhere in the image, and interior contours are automatically detected.

10,404 citations


Cites background or methods or result from "Optimal approximations by piecewise..."

  • ...We expect, of course, to have existence of minimizers of the energy , due to several general results: our model is a particular case of the minimal partition problem, for which the existence has been proved in [ 18 ] (assuming that is continuous on ), and also in [16] and [17], for more general data . Also, the existence for the general Mumford‐Shah segmentation problem has been proved in [5]....

    [...]

  • ...The Mumford‐Shah functional for segmentation is [ 18 ]...

    [...]

  • ...The stopping term is based on Mumford‐Shah segmentation techniques [ 18 ]....

    [...]

  • ...A reduced form of this problem is simply the restriction of to piecewise constant functions , i.e., on each connected component of . Therefore, as it was also pointed out by D. Mumford and J. Shah [ 18 ], on each connected component . The reduced case is called the minimal partition problem....

    [...]

Journal ArticleDOI
TL;DR: The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends to discuss the important issues related to tracking including the use of appropriate image features, selection of motion models, and detection of objects.
Abstract: The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends. Object tracking, in general, is a challenging problem. Difficulties in tracking objects can arise due to abrupt object motion, changing appearance patterns of both the object and the scene, nonrigid object structures, object-to-object and object-to-scene occlusions, and camera motion. Tracking is usually performed in the context of higher-level applications that require the location and/or shape of the object in every frame. Typically, assumptions are made to constrain the tracking problem in the context of a particular application. In this survey, we categorize the tracking methods on the basis of the object and motion representations used, provide detailed descriptions of representative methods in each category, and examine their pros and cons. Moreover, we discuss the important issues related to tracking including the use of appropriate image features, selection of motion models, and detection of objects.

5,318 citations


Cites background from "Optimal approximations by piecewise..."

  • ...Their energy is a modi.ed form of the common Mumford-Shah energy [Mumford and Shah 1989], which evolves the contour until a region with homogeneous .ow vectors is achieved....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The analogy between images and statistical mechanics systems is made and the analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations, creating a highly parallel ``relaxation'' algorithm for MAP estimation.
Abstract: We make an analogy between images and statistical mechanics systems. Pixel gray levels and the presence and orientation of edges are viewed as states of atoms or molecules in a lattice-like physical system. The assignment of an energy function in the physical system determines its Gibbs distribution. Because of the Gibbs distribution, Markov random field (MRF) equivalence, this assignment also determines an MRF image model. The energy function is a more convenient and natural mechanism for embodying picture attributes than are the local characteristics of the MRF. For a range of degradation mechanisms, including blurring, nonlinear deformations, and multiplicative or additive noise, the posterior distribution is an MRF with a structure akin to the image model. By the analogy, the posterior distribution defines another (imaginary) physical system. Gradual temperature reduction in the physical system isolates low energy states (``annealing''), or what is the same thing, the most probable states under the Gibbs distribution. The analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations. The result is a highly parallel ``relaxation'' algorithm for MAP estimation. We establish convergence properties of the algorithm and we experiment with some simple pictures, for which good restorations are obtained at low signal-to-noise ratios.

18,761 citations


"Optimal approximations by piecewise..." refers background in this paper

  • ...A closely related functional defined for functions g and f on a lattice instead of on a plane domain R was first introduced by D. and S. Geman [6], and has been studied by Blake and Zisserman [4], J. Marroquin [lo] and others....

    [...]

Book
01 Jan 1902
TL;DR: The volume now gives a somewhat exhaustive account of the various ramifications of the subject, which are set out in an attractive manner and should become indispensable, not only as a textbook for advanced students, but as a work of reference to those whose aim is to extend the knowledge of analysis.
Abstract: This classic work has been a unique resource for thousands of mathematicians, scientists and engineers since its first appearance in 1902 Never out of print, its continuing value lies in its thorough and exhaustive treatment of special functions of mathematical physics and the analysis of differential equations from which they emerge The book also is of historical value as it was the first book in English to introduce the then modern methods of complex analysis This fifth edition preserves the style and content of the original, but it has been supplemented with more recent results and references where appropriate All the formulas have been checked and many corrections made A complete bibliographical search has been conducted to present the references in modern form for ease of use A new foreword by Professor SJ Patterson sketches the circumstances of the book's genesis and explains the reasons for its longevity A welcome addition to any mathematician's bookshelf, this will allow a whole new generation to experience the beauty contained in this text

8,965 citations


"Optimal approximations by piecewise..." refers methods in this paper

  • ...If there were no boundaries at all, then Green's function for this operator and the whole plane is obtained from the so-called " modified Bessel's function of the second kind " KO (cf. Whittaker and Watson [14], Section 17.71, pp. 373-374): where K , ( r ) (defined for r > 0) is the solution of...

    [...]

Book
01 Apr 1985
TL;DR: Second-order boundary value problems in polygons have been studied in this article for convex domains, where the second order boundary value problem can be solved in the Sobolev spaces of Holder functions.
Abstract: Foreword Preface 1. Sobolev spaces 2. Regular second-order elliptic boundary value problems 3. Second-order elliptic boundary value problems in convex domains 4. Second-order boundary value problems in polygons 5. More singular solutions 6. Results in spaces of Holder functions 7. A model fourth-order problem 8. Miscellaneous Bibliography Index.

5,248 citations


"Optimal approximations by piecewise..." refers background or methods in this paper

  • ...6 in Grisvard [7] (applied to gp and f r separately),...

    [...]

  • ...By the trace theorem (see [7]), the restriction of u E Wp?(W) to dW defines a continuous linear map w,"(w) -+ w;(aw) c w;(aw)....

    [...]

  • ...By Sobolev imbedding theorem, u E Hi(Q2) where q > 2, and by the trace theorems (see [7]),...

    [...]

  • ...by the trace formula in Sobolev spaces (see [7], Section 1....

    [...]

  • ...However, the behavior of the solutions of elliptic boundary value problems in domains with " corners " has been studied by several people, starting with a classic paper of Kondratiev [9] and recently surveyed in a book of Grisvard [7]....

    [...]