scispace - formally typeset
Search or ask a question
Journal Article

Optimal decoding of linear codes for minimizing symbol error rate

01 Jan 1974-IEEE Transactions on Information Theory-Vol. 20, Iss: 2, pp 284-287
About: This article is published in IEEE Transactions on Information Theory.The article was published on 1974-01-01 and is currently open access. It has received 6667 citations till now. The article focuses on the topics: Linear code & Concatenated error correction code.
Citations
More filters
Book
06 Oct 2003
TL;DR: A fun and exciting textbook on the mathematics underpinning the most dynamic areas of modern science and engineering.
Abstract: Fun and exciting textbook on the mathematics underpinning the most dynamic areas of modern science and engineering.

8,091 citations

Proceedings Article
01 Jan 1993

7,742 citations

Journal ArticleDOI
TL;DR: A generic message-passing algorithm, the sum-product algorithm, that operates in a factor graph, that computes-either exactly or approximately-various marginal functions derived from the global function.
Abstract: Algorithms that must deal with complicated global functions of many variables often exploit the manner in which the given functions factor as a product of "local" functions, each of which depends on a subset of the variables. Such a factorization can be visualized with a bipartite graph that we call a factor graph, In this tutorial paper, we present a generic message-passing algorithm, the sum-product algorithm, that operates in a factor graph. Following a single, simple computational rule, the sum-product algorithm computes-either exactly or approximately-various marginal functions derived from the global function. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can be derived as specific instances of the sum-product algorithm, including the forward/backward algorithm, the Viterbi algorithm, the iterative "turbo" decoding algorithm, Pearl's (1988) belief propagation algorithm for Bayesian networks, the Kalman filter, and certain fast Fourier transform (FFT) algorithms.

6,637 citations

Journal ArticleDOI
01 Mar 1973
TL;DR: This paper gives a tutorial exposition of the Viterbi algorithm and of how it is implemented and analyzed, and increasing use of the algorithm in a widening variety of areas is foreseen.
Abstract: The Viterbi algorithm (VA) is a recursive optimal solution to the problem of estimating the state sequence of a discrete-time finite-state Markov process observed in memoryless noise. Many problems in areas such as digital communications can be cast in this form. This paper gives a tutorial exposition of the algorithm and of how it is implemented and analyzed. Applications to date are reviewed. Increasing use of the algorithm in a widening variety of areas is foreseen.

5,995 citations

Proceedings ArticleDOI
23 May 1993
TL;DR: In this article, a new class of convolutional codes called turbo-codes, whose performances in terms of bit error rate (BER) are close to the Shannon limit, is discussed.
Abstract: A new class of convolutional codes called turbo-codes, whose performances in terms of bit error rate (BER) are close to the Shannon limit, is discussed. The turbo-code encoder is built using a parallel concatenation of two recursive systematic convolutional codes, and the associated decoder, using a feedback decoding rule, is implemented as P pipelined identical elementary decoders. >

5,963 citations

References
More filters
Book
01 Jan 1963
TL;DR: A simple but nonoptimum decoding scheme operating directly from the channel a posteriori probabilities is described and the probability of error using this decoder on a binary symmetric channel is shown to decrease at least exponentially with a root of the block length.
Abstract: A low-density parity-check code is a code specified by a parity-check matrix with the following properties: each column contains a small fixed number j \geq 3 of l's and each row contains a small fixed number k > j of l's. The typical minimum distance of these codes increases linearly with block length for a fixed rate and fixed j . When used with maximum likelihood decoding on a sufficiently quiet binary-input symmetric channel, the typical probability of decoding error decreases exponentially with block length for a fixed rate and fixed j . A simple but nonoptimum decoding scheme operating directly from the channel a posteriori probabilities is described. Both the equipment complexity and the data-handling capacity in bits per second of this decoder increase approximately linearly with block length. For j > 3 and a sufficiently low rate, the probability of error using this decoder on a binary symmetric channel is shown to decrease at least exponentially with a root of the block length. Some experimental results show that the actual probability of decoding error is much smaller than this theoretical bound.

11,592 citations

Journal ArticleDOI
TL;DR: The upper bound is obtained for a specific probabilistic nonsequential decoding algorithm which is shown to be asymptotically optimum for rates above R_{0} and whose performance bears certain similarities to that of sequential decoding algorithms.
Abstract: The probability of error in decoding an optimal convolutional code transmitted over a memoryless channel is bounded from above and below as a function of the constraint length of the code. For all but pathological channels the bounds are asymptotically (exponentially) tight for rates above R_{0} , the computational cutoff rate of sequential decoding. As a function of constraint length the performance of optimal convolutional codes is shown to be superior to that of block codes of the same length, the relative improvement increasing with rate. The upper bound is obtained for a specific probabilistic nonsequential decoding algorithm which is shown to be asymptotically optimum for rates above R_{0} and whose performance bears certain similarities to that of sequential decoding algorithms.

6,804 citations

Book
01 Jan 1968
TL;DR: This chapter discusses Coding for Discrete Sources, Techniques for Coding and Decoding, and Source Coding with a Fidelity Criterion.
Abstract: Communication Systems and Information Theory. A Measure of Information. Coding for Discrete Sources. Discrete Memoryless Channels and Capacity. The Noisy-Channel Coding Theorem. Techniques for Coding and Decoding. Memoryless Channels with Discrete Time. Waveform Channels. Source Coding with a Fidelity Criterion. Index.

6,684 citations

Journal ArticleDOI
01 Mar 1973
TL;DR: This paper gives a tutorial exposition of the Viterbi algorithm and of how it is implemented and analyzed, and increasing use of the algorithm in a widening variety of areas is foreseen.
Abstract: The Viterbi algorithm (VA) is a recursive optimal solution to the problem of estimating the state sequence of a discrete-time finite-state Markov process observed in memoryless noise. Many problems in areas such as digital communications can be cast in this form. This paper gives a tutorial exposition of the algorithm and of how it is implemented and analyzed. Applications to date are reviewed. Increasing use of the algorithm in a widening variety of areas is foreseen.

5,995 citations

Journal ArticleDOI
TL;DR: The author was led to the study given in this paper from a consideration of large scale computing machines in which a large number of operations must be performed without a single error in the end result.
Abstract: The author was led to the study given in this paper from a consideration of large scale computing machines in which a large number of operations must be performed without a single error in the end result. This problem of “doing things right” on a large scale is not essentially new; in a telephone central office, for example, a very large number of operations are performed while the errors leading to wrong numbers are kept well under control, though they have not been completely eliminated. This has been achieved, in part, through the use of self-checking circuits. The occasional failure that escapes routine checking is still detected by the customer and will, if it persists, result in customer complaint, while if it is transient it will produce only occasional wrong numbers. At the same time the rest of the central office functions satisfactorily. In a digital computer, on the other hand, a single failure usually means the complete failure, in the sense that if it is detected no more computing can be done until the failure is located and corrected, while if it escapes detection then it invalidates all subsequent operations of the machine. Put in other words, in a telephone central office there are a number of parallel paths which are more or less independent of each other; in a digital machine there is usually a single long path which passes through the same piece of equipment many, many times before the answer is obtained.

5,408 citations