scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Optimal design for universal multiport interferometers

20 Dec 2016-Vol. 3, Iss: 12, pp 1460-1465
TL;DR: In this article, an alternative arrangement of beam splitters and phase shifters was proposed for universal multiport interferometers, which requires half the optical depth of the Reck et al. design and is significantly more robust to optical losses.
Abstract: Universal multiport interferometers, which can be programmed to implement any linear transformation between multiple channels, are emerging as a powerful tool for both classical and quantum photonics. These interferometers are typically composed of a regular mesh of beam splitters and phase shifters, allowing for straightforward fabrication using integrated photonic architectures and ready scalability. The current, standard design for universal multiport interferometers is based on work by Reck et al. [Phys. Rev. Lett.73, 58 (1994)PRLTAO0031-900710.1103/PhysRevLett.73.58]. We demonstrate a new design for universal multiport interferometers based on an alternative arrangement of beam splitters and phase shifters, which outperforms that by Reck et al. Our design requires half the optical depth of the Reck design and is significantly more robust to optical losses.
Citations
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: This article reviews in a selective way the recent research on the interface between machine learning and the physical sciences, including conceptual developments in ML motivated by physical insights, applications of machine learning techniques to several domains in physics, and cross fertilization between the two fields.
Abstract: Machine learning (ML) encompasses a broad range of algorithms and modeling tools used for a vast array of data processing tasks, which has entered most scientific disciplines in recent years. This article reviews in a selective way the recent research on the interface between machine learning and the physical sciences. This includes conceptual developments in ML motivated by physical insights, applications of machine learning techniques to several domains in physics, and cross fertilization between the two fields. After giving a basic notion of machine learning methods and principles, examples are described of how statistical physics is used to understand methods in ML. This review then describes applications of ML methods in particle physics and cosmology, quantum many-body physics, quantum computing, and chemical and material physics. Research and development into novel computing architectures aimed at accelerating ML are also highlighted. Each of the sections describe recent successes as well as domain-specific methodology and challenges.

1,504 citations

Journal ArticleDOI
20 Apr 2018-Science
TL;DR: A multidimensional integrated quantum photonic platform able to generate, control, and analyze high-dimensional entanglement is demonstrated, and a programmable bipartite entangled system is realized with dimensions up to 15 × 15 on a large-scale silicon photonics quantum circuit.
Abstract: The ability to control multidimensional quantum systems is central to the development of advanced quantum technologies. We demonstrate a multidimensional integrated quantum photonic platform able to generate, control, and analyze high-dimensional entanglement. A programmable bipartite entangled system is realized with dimensions up to 15 × 15 on a large-scale silicon photonics quantum circuit. The device integrates more than 550 photonic components on a single chip, including 16 identical photon-pair sources. We verify the high precision, generality, and controllability of our multidimensional technology, and further exploit these abilities to demonstrate previously unexplored quantum applications, such as quantum randomness expansion and self-testing on multidimensional states. Our work provides an experimental platform for the development of multidimensional quantum technologies.

528 citations

Journal ArticleDOI
08 Oct 2020-Nature
TL;DR: Generic chips can accelerate the development of future photonic circuits by providing a higher-level platform for prototyping novel optical functionalities without the need for custom chip fabrication.
Abstract: The growing maturity of integrated photonic technology makes it possible to build increasingly large and complex photonic circuits on the surface of a chip. Today, most of these circuits are designed for a specific application, but the increase in complexity has introduced a generation of photonic circuits that can be programmed using software for a wide variety of functions through a mesh of on-chip waveguides, tunable beam couplers and optical phase shifters. Here we discuss the state of this emerging technology, including recent developments in photonic building blocks and circuit architectures, as well as electronic control and programming strategies. We cover possible applications in linear matrix operations, quantum information processing and microwave photonics, and examine how these generic chips can accelerate the development of future photonic circuits by providing a higher-level platform for prototyping novel optical functionalities without the need for custom chip fabrication. The current state of programmable photonic integrated circuits is discussed, including recent developments in their building blocks, circuit architectures, electronic control and programming strategies, as well as different application spaces.

521 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used the National Natural Science Foundation of China, the Chinese Academy of Sciences, the National Fundamental Research Program, and the State of Bavaria to support the work of the authors.
Abstract: This work was supported by the National Natural Science Foundation of China, the Chinese Academy of Sciences, the National Fundamental Research Program, and the State of Bavaria.

427 citations

References
More filters
Journal ArticleDOI
TL;DR: An algorithmic proof that any discrete finite-dimensional unitary operator can be constructed in the laboratory using optical devices is given, and optical experiments with any type of radiation exploring higher-dimensional discrete quantum systems become feasible.
Abstract: An algorithmic proof that any discrete finite-dimensional unitary operator can be constructed in the laboratory using optical devices is given. Our recursive algorithm factorizes any N\ifmmode\times\else\texttimes\fi{}N unitary matrix into a sequence of two-dimensional beam splitter transformations. The experiment is built from the corresponding devices. This also permits the measurement of the observable corresponding to any discrete Hermitian matrix. Thus optical experiments with any type of radiation (photons, atoms, etc.) exploring higher-dimensional discrete quantum systems become feasible.

1,699 citations

Journal ArticleDOI
14 Aug 2015-Science
TL;DR: In this paper, a sixmode universal system consisting of a cascade of 15 Mach-Zehnder interferometers with 30 thermo-optic phase shifters integrated into a single photonic chip was demonstrated.
Abstract: Linear optics underpins fundamental tests of quantum mechanics and quantum technologies. We demonstrate a single reprogrammable optical circuit that is sufficient to implement all possible linear optical protocols up to the size of that circuit. Our six-mode universal system consists of a cascade of 15 Mach-Zehnder interferometers with 30 thermo-optic phase shifters integrated into a single photonic chip that is electrically and optically interfaced for arbitrary setting of all phase shifters, input of up to six photons, and their measurement with a 12-single-photon detector system. We programmed this system to implement heralded quantum logic and entangling gates, boson sampling with verification tests, and six-dimensional complex Hadamards. We implemented 100 Haar random unitaries with an average fidelity of 0.999 ± 0.001. Our system can be rapidly reprogrammed to implement these and any other linear optical protocol, pointing the way to applications across fundamental science and quantum technologies.

929 citations

Journal ArticleDOI
TL;DR: In this paper, the Aaronson-Arkhipov test is used to distinguish the AARonson-Arkinov test from uniformly drawn samples for boson-sampling experiments.
Abstract: To address the controversy regarding the validation of an experiment that is hard to simulate, boson-sampling experiments are implemented with three photons in randomly designed integrated chips with up to 13 modes. It is experimentally demonstrated that the Aaronson–Arkhipov test allows boson-sampling experiments to be distinguished from uniformly drawn samples.

331 citations

Journal ArticleDOI
TL;DR: It is shown how to design an optical device that can perform any linear function or coupling between inputs and outputs, and that other linear operations, including frequency and time mappings, are possible in principle, even if very challenging in practice, thus proving there is at least one constructive design for any conceivable linear optical component.
Abstract: We show how to design an optical device that can perform any linear function or coupling between inputs and outputs. This design method is progressive, requiring no global optimization. We also show how the device can configure itself progressively, avoiding design calculations and allowing the device to stabilize itself against drifts in component properties and to continually adjust itself to changing conditions. This self-configuration operates by training with the desired pairs of orthogonal input and output functions, using sets of detectors and local feedback loops to set individual optical elements within the device, with no global feedback or multiparameter optimization required. Simple mappings, such as spatial mode conversions and polarization control, can be implemented using standard planar integrated optics. In the spirit of a universal machine, we show that other linear operations, including frequency and time mappings, as well as nonreciprocal operation, are possible in principle, even if very challenging in practice, thus proving there is at least one constructive design for any conceivable linear optical component; such a universal device can also be self-configuring. This approach is general for linear waves, and could be applied to microwaves, acoustics, and quantum mechanical superpositions. © 2013 Chinese Laser Press OCIS codes: (220.1080) Active or adaptive optics; (130.6750) Systems; (230.3120) Integrated optics devices.

283 citations

Journal ArticleDOI
TL;DR: In this paper, the authors propose a self-configuration method for linear optical components, which can perform any linear function or coupling between inputs and outputs, without global feedback or multiparameter optimization.
Abstract: We show how to design an optical device that can perform any linear function or coupling between inputs and outputs. This design method is progressive, requiring no global optimization. We also show how the device can configure itself progressively, avoiding design calculations and allowing the device to stabilize itself against drifts in component properties and to continually adjust itself to changing conditions. This self-configuration operates by training with the desired pairs of orthogonal input and output functions, using sets of detectors and local feedback loops to set individual optical elements within the device, with no global feedback or multiparameter optimization required. Simple mappings, such as spatial mode conversions and polarization control, can be implemented using standard planar integrated optics. In the spirit of a universal machine, we show that other linear operations, including frequency and time mappings, as well as nonreciprocal operation, are possible in principle, even if very challenging in practice, thus proving there is at least one constructive design for any conceivable linear optical component; such a universal device can also be self-configuring. This approach is general for linear waves, and could be applied to microwaves, acoustics, and quantum mechanical superpositions.

275 citations