scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Optimal power flow using moth swarm algorithm

TL;DR: In this paper, a novel Moth Swarm Algorithm (MSA) inspired by the orientation of moths towards moonlight was proposed to solve constrained optimal power flow (OPF) problem.
About: This article is published in Electric Power Systems Research.The article was published on 2017-01-01. It has received 340 citations till now. The article focuses on the topics: Electric power system & Associative learning.
Citations
More filters
Journal ArticleDOI
TL;DR: The comparison results on the benchmark functions suggest that MRFO is far superior to its competitors, and the real-world engineering applications show the merits of this algorithm in tackling challenging problems in terms of computational cost and solution precision.

519 citations

Journal ArticleDOI
TL;DR: The experimental results and statistical tests demonstrate that the I-GWO algorithm is very competitive and often superior compared to the algorithms used in the experiments, and the results of the proposed algorithm on the engineering design problems demonstrate its efficiency and applicability.
Abstract: In this article, an Improved Grey Wolf Optimizer (I-GWO) is proposed for solving global optimization and engineering design problems. This improvement is proposed to alleviate the lack of population diversity, the imbalance between the exploitation and exploration, and premature convergence of the GWO algorithm. The I-GWO algorithm benefits from a new movement strategy named dimension learning-based hunting (DLH) search strategy inherited from the individual hunting behavior of wolves in nature. DLH uses a different approach to construct a neighborhood for each wolf in which the neighboring information can be shared between wolves. This dimension learning used in the DLH search strategy enhances the balance between local and global search and maintains diversity. The performance of the proposed I-GWO algorithm is evaluated on the CEC 2018 benchmark suite and four engineering problems. In all experiments, I-GWO is compared with six other state-of-the-art metaheuristics. The results are also analyzed by Friedman and MAE statistical tests. The experimental results and statistical tests demonstrate that the I-GWO algorithm is very competitive and often superior compared to the algorithms used in the experiments. The results of the proposed algorithm on the engineering design problems demonstrate its efficiency and applicability.

398 citations

Journal ArticleDOI
TL;DR: A novel physics-inspired metaheuristic optimization algorithm, atom search optimization (ASO), inspired by basic molecular dynamics, is developed to address a diverse set of optimization problems.
Abstract: In recent years, various metaheuristic optimization methods have been proposed in scientific and engineering fields In this study, a novel physics-inspired metaheuristic optimization algorithm, atom search optimization (ASO), inspired by basic molecular dynamics, is developed to address a diverse set of optimization problems ASO mathematically models and mimics the atomic motion model in nature, where atoms interact through interaction forces resulting from the Lennard-Jones potential and constraint forces resulting from the bond-length potential The proposed algorithm is simple and easy to implement ASO is tested on a range of benchmark functions to verify its validity, qualitatively and quantitatively, and then applied to a hydrogeologic parameter estimation problem with success The results demonstrate that ASO is superior to some classic and newly emerging algorithms in the literature and is a promising solution to real-world engineering problems

359 citations

Journal ArticleDOI
TL;DR: In this paper, an approach to solve optimal power flow combining stochastic wind and solar power with conventional thermal power generators in the system is proposed, where the objective function considers reserve cost for overestimation and penalty cost for underestimation of intermittent renewable sources.

286 citations

Journal ArticleDOI
TL;DR: Perceived superiority of feasibly solutions, self-adaptive penalty and an ensemble of these two constraint handling techniques (ECHT) with differential evolution (DE) being the basic search algorithm, on the problem of OPF are presented.

181 citations

References
More filters
Journal ArticleDOI
TL;DR: A framework is developed to explore the connection between effective optimization algorithms and the problems they are solving and a number of "no free lunch" (NFL) theorems are presented which establish that for any algorithm, any elevated performance over one class of problems is offset by performance over another class.
Abstract: A framework is developed to explore the connection between effective optimization algorithms and the problems they are solving. A number of "no free lunch" (NFL) theorems are presented which establish that for any algorithm, any elevated performance over one class of problems is offset by performance over another class. These theorems result in a geometric interpretation of what it means for an algorithm to be well suited to an optimization problem. Applications of the NFL theorems to information-theoretic aspects of optimization and benchmark measures of performance are also presented. Other issues addressed include time-varying optimization problems and a priori "head-to-head" minimax distinctions between optimization algorithms, distinctions that result despite the NFL theorems' enforcing of a type of uniformity over all algorithms.

10,771 citations

Journal ArticleDOI
TL;DR: A "fast EP" (FEP) is proposed which uses a Cauchy instead of Gaussian mutation as the primary search operator and is proposed and tested empirically, showing that IFEP performs better than or as well as the better of FEP and CEP for most benchmark problems tested.
Abstract: Evolutionary programming (EP) has been applied with success to many numerical and combinatorial optimization problems in recent years. EP has rather slow convergence rates, however, on some function optimization problems. In the paper, a "fast EP" (FEP) is proposed which uses a Cauchy instead of Gaussian mutation as the primary search operator. The relationship between FEP and classical EP (CEP) is similar to that between fast simulated annealing and the classical version. Both analytical and empirical studies have been carried out to evaluate the performance of FEP and CEP for different function optimization problems. The paper shows that FEP is very good at search in a large neighborhood while CEP is better at search in a small local neighborhood. For a suite of 23 benchmark problems, FEP performs much better than CEP for multimodal functions with many local minima while being comparable to CEP in performance for unimodal and multimodal functions with only a few local minima. The paper also shows the relationship between the search step size and the probability of finding a global optimum and thus explains why FEP performs better than CEP on some functions but not on others. In addition, the importance of the neighborhood size and its relationship to the probability of finding a near-optimum is investigated. Based on these analyses, an improved FEP (IFEP) is proposed and tested empirically. This technique mixes different search operators (mutations). The experimental results show that IFEP performs better than or as well as the better of FEP and CEP for most benchmark problems tested.

3,412 citations

Journal ArticleDOI
TL;DR: The MFO algorithm is compared with other well-known nature-inspired algorithms on 29 benchmark and 7 real engineering problems and the statistical results show that this algorithm is able to provide very promising and competitive results.
Abstract: In this paper a novel nature-inspired optimization paradigm is proposed called Moth-Flame Optimization (MFO) algorithm. The main inspiration of this optimizer is the navigation method of moths in nature called transverse orientation. Moths fly in night by maintaining a fixed angle with respect to the moon, a very effective mechanism for travelling in a straight line for long distances. However, these fancy insects are trapped in a useless/deadly spiral path around artificial lights. This paper mathematically models this behaviour to perform optimization. The MFO algorithm is compared with other well-known nature-inspired algorithms on 29 benchmark and 7 real engineering problems. The statistical results on the benchmark functions show that this algorithm is able to provide very promising and competitive results. Additionally, the results of the real problems demonstrate the merits of this algorithm in solving challenging problems with constrained and unknown search spaces. The paper also considers the application of the proposed algorithm in the field of marine propeller design to further investigate its effectiveness in practice. Note that the source codes of the MFO algorithm are publicly available at http://www.alimirjalili.com/MFO.html.

2,892 citations

Book ChapterDOI
03 Sep 2012
TL;DR: This paper proposes a new algorithm, namely, flower pollination algorithm, inspired by the pollination process of flowers, and uses it to solve a nonlinear design benchmark, which shows the convergence rate is almost exponential.
Abstract: Flower pollination is an intriguing process in the natural world. Its evolutionary characteristics can be used to design new optimization algorithms. In this paper, we propose a new algorithm, namely, flower pollination algorithm, inspired by the pollination process of flowers. We first use ten test functions to validate the new algorithm, and compare its performance with genetic algorithms and particle swarm optimization. Our simulation results show the flower algorithm is more efficient than both GA and PSO. We also use the flower algorithm to solve a nonlinear design benchmark, which shows the convergence rate is almost exponential.

1,525 citations

Journal ArticleDOI
TL;DR: In this paper, the authors extend the Dommel-Tinney approach by incorporating exact outage-contingency constraints into the method, to give an optimal steady-state-secure system operating point.
Abstract: The Dommel-Tinney approach to the calculation of optimal power-system load flows has proved to be very powerful and general. This paper extends the problem formulation and solution scheme by incorporating exact outage-contingency constraints into the method, to give an optimal steady-state-secure system operating point. The controllable system quantities in the base-case problem (e.g. generated MW, controlled voltage magnitudes, transformer taps) are optimised within their limits according to some defined objective, so that no limit-violations on other quantities (e. g. generator MVAR and current loadings, transmission-circuit loadings, load-bus voltage magnitudes, angular displacements) occur in either the base-case or contingency-case system operating conditions.

1,487 citations