scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Optimal speedup of Las Vegas algorithms

TL;DR: The authors describe a simple universal strategy S/sup univ/, with the property that, for any algorithm A, T(A,S/Sup univ/)=O (l/sub A/log(l/ sub A/)), which is the best performance that can be achieved, up to a constant factor, by any universal strategy.
Abstract: Let A be a Las Vegas algorithm, i.e., A is a randomized algorithm that always produces the correct answer when its stops but whose running time is a random variable. The authors consider the problem of minimizing the expected time required to obtain an answer from A using strategies which simulate A as follows: run A for a fixed amount of time t/sub 1/, then run A independent for a fixed amount of time t/sub 2/, etc. The simulation stops if A completes its execution during any of the runs. Let S=(t/sub 1/, t/sub 2/,. . .) be a strategy, and let l/sub A/=inf/sub S/T(A,S), where T(A,S) is the expected value of the running time of the simulation of A under strategy S. The authors describe a simple universal strategy S/sup univ/, with the property that, for any algorithm A, T(A,S/sup univ/)=O(l/sub A/log(l/sub A/)). Furthermore, they show that this is the best performance that can be achieved, up to a constant factor, by any universal strategy. >
Citations
More filters
Book
01 Jan 2003
TL;DR: Rina Dechter synthesizes three decades of researchers work on constraint processing in AI, databases and programming languages, operations research, management science, and applied mathematics to provide the first comprehensive examination of the theory that underlies constraint processing algorithms.
Abstract: Constraint satisfaction is a simple but powerful tool. Constraints identify the impossible and reduce the realm of possibilities to effectively focus on the possible, allowing for a natural declarative formulation of what must be satisfied, without expressing how. The field of constraint reasoning has matured over the last three decades with contributions from a diverse community of researchers in artificial intelligence, databases and programming languages, operations research, management science, and applied mathematics. Today, constraint problems are used to model cognitive tasks in vision, language comprehension, default reasoning, diagnosis, scheduling, temporal and spatial reasoning. In Constraint Processing, Rina Dechter, synthesizes these contributions, along with her own significant work, to provide the first comprehensive examination of the theory that underlies constraint processing algorithms. Throughout, she focuses on fundamental tools and principles, emphasizing the representation and analysis of algorithms. ·Examines the basic practical aspects of each topic and then tackles more advanced issues, including current research challenges ·Builds the reader's understanding with definitions, examples, theory, algorithms and complexity analysis ·Synthesizes three decades of researchers work on constraint processing in AI, databases and programming languages, operations research, management science, and applied mathematics Table of Contents Preface; Introduction; Constraint Networks; Consistency-Enforcing Algorithms: Constraint Propagation; Directional Consistency; General Search Strategies; General Search Strategies: Look-Back; Local Search Algorithms; Advanced Consistency Methods; Tree-Decomposition Methods; Hybrid of Search and Inference: Time-Space Trade-offs; Tractable Constraint Languages; Temporal Constraint Networks; Constraint Optimization; Probabilistic Networks; Constraint Logic Programming; Bibliography

1,739 citations

Book
01 Jan 2006
TL;DR: Researchers from other fields should find in this handbook an effective way to learn about constraint programming and to possibly use some of the constraint programming concepts and techniques in their work, thus providing a means for a fruitful cross-fertilization among different research areas.
Abstract: Constraint programming is a powerful paradigm for solving combinatorial search problems that draws on a wide range of techniques from artificial intelligence, computer science, databases, programming languages, and operations research. Constraint programming is currently applied with success to many domains, such as scheduling, planning, vehicle routing, configuration, networks, and bioinformatics. The aim of this handbook is to capture the full breadth and depth of the constraint programming field and to be encyclopedic in its scope and coverage. While there are several excellent books on constraint programming, such books necessarily focus on the main notions and techniques and cannot cover also extensions, applications, and languages. The handbook gives a reasonably complete coverage of all these lines of work, based on constraint programming, so that a reader can have a rather precise idea of the whole field and its potential. Of course each line of work is dealt with in a survey-like style, where some details may be neglected in favor of coverage. However, the extensive bibliography of each chapter will help the interested readers to find suitable sources for the missing details. Each chapter of the handbook is intended to be a self-contained survey of a topic, and is written by one or more authors who are leading researchers in the area. The intended audience of the handbook is researchers, graduate students, higher-year undergraduates and practitioners who wish to learn about the state-of-the-art in constraint programming. No prior knowledge about the field is necessary to be able to read the chapters and gather useful knowledge. Researchers from other fields should find in this handbook an effective way to learn about constraint programming and to possibly use some of the constraint programming concepts and techniques in their work, thus providing a means for a fruitful cross-fertilization among different research areas. The handbook is organized in two parts. The first part covers the basic foundations of constraint programming, including the history, the notion of constraint propagation, basic search methods, global constraints, tractability and computational complexity, and important issues in modeling a problem as a constraint problem. The second part covers constraint languages and solver, several useful extensions to the basic framework (such as interval constraints, structured domains, and distributed CSPs), and successful application areas for constraint programming. - Covers the whole field of constraint programming - Survey-style chapters - Five chapters on applications Table of Contents Foreword (Ugo Montanari) Part I : Foundations Chapter 1. Introduction (Francesca Rossi, Peter van Beek, Toby Walsh) Chapter 2. Constraint Satisfaction: An Emerging Paradigm (Eugene C. Freuder, Alan K. Mackworth) Chapter 3. Constraint Propagation (Christian Bessiere) Chapter 4. Backtracking Search Algorithms (Peter van Beek) Chapter 5. Local Search Methods (Holger H. Hoos, Edward Tsang) Chapter 6. Global Constraints (Willem-Jan van Hoeve, Irit Katriel) Chapter 7. Tractable Structures for CSPs (Rina Dechter) Chapter 8. The Complexity of Constraint Languages (David Cohen, Peter Jeavons) Chapter 9. Soft Constraints (Pedro Meseguer, Francesca Rossi, Thomas Schiex) Chapter 10. Symmetry in Constraint Programming (Ian P. Gent, Karen E. Petrie, Jean-Francois Puget) Chapter 11. Modelling (Barbara M. Smith) Part II : Extensions, Languages, and Applications Chapter 12. Constraint Logic Programming (Kim Marriott, Peter J. Stuckey, Mark Wallace) Chapter 13. Constraints in Procedural and Concurrent Languages (Thom Fruehwirth, Laurent Michel, Christian Schulte) Chapter 14. Finite Domain Constraint Programming Systems (Christian Schulte, Mats Carlsson) Chapter 15. Operations Research Methods in Constraint Programming (John Hooker) Chapter 16. Continuous and Interval Constraints(Frederic Benhamou, Laurent Granvilliers) Chapter 17. Constraints over Structured Domains (Carmen Gervet) Chapter 18. Randomness and Structure (Carla Gomes, Toby Walsh) Chapter 19. Temporal CSPs (Manolis Koubarakis) Chapter 20. Distributed Constraint Programming (Boi Faltings) Chapter 21. Uncertainty and Change (Kenneth N. Brown, Ian Miguel) Chapter 22. Constraint-Based Scheduling and Planning (Philippe Baptiste, Philippe Laborie, Claude Le Pape, Wim Nuijten) Chapter 23. Vehicle Routing (Philip Kilby, Paul Shaw) Chapter 24. Configuration (Ulrich Junker) Chapter 25. Constraint Applications in Networks (Helmut Simonis) Chapter 26. Bioinformatics and Constraints (Rolf Backofen, David Gilbert)

1,527 citations

Book
08 Jan 2008
TL;DR: The Handbook of Knowledge Representation is an up-to-date review of twenty-five key topics in knowledge representation written by the leaders of each field, an essential resource for students, researchers and practitioners in all areas of Artificial Intelligence.
Abstract: Knowledge Representation, which lies at the core of Artificial Intelligence, is concerned with encoding knowledge on computers to enable systems to reason automatically. The Handbook of Knowledge Representation is an up-to-date review of twenty-five key topics in knowledge representation, written by the leaders of each field.This book is an essential resource for students, researchers and practitioners in all areas of Artificial Intelligence. * Make your computer smarter* Handle qualitative and uncertain information* Improve computational tractability to solve your problems easily

785 citations

Proceedings Article
01 Jul 1998
TL;DR: This work presents a general method for introducing controlled randomization into complete search algorithms and demonstrates speedups of several orders of magnitude for state-of-the-art complete search procedures running on hard, real-world problems.
Abstract: Unpredictability in the running time of complete search procedures can often be explained by the phenomenon of "heavy-tailed cost distributions", meaning that at any time during the experiment there is a non-negligible probability of hitting a problem that requires exponentially more time to solve than any that has been encountered before (Gomes et al. 1998a). We present a general method for introducing controlled randomization into complete search algorithms. The "boosted" search methods provably eliminate heavy-tails to the right of the median. Furthermore, they can take advantage of heavy-tails to the left of the median (that is, a nonnegligible chance of very short runs) to dramatically shorten the solution time. We demonstrate speedups of several orders of magnitude for state-of-the-art complete search procedures running on hard, real-world problems.

651 citations

Proceedings Article
31 Jul 1999
TL;DR: It is shown that STRIPS problems can be directly translated into SAT and efficiently solved using new randomized systematic solvers and that polynomialtime SAT simplification algorithms applied to the encoded problem instances are a powerful complement to the "mutex" propagation algorithm that works directly on the plan graph.
Abstract: The Blackbox planning system unifies the planning as satisfiability framework (Kautz and Selman 1992, 1996) with the plan graph approach to STRIPS planning (Blum and Furst 1995). We show that STRIPS problems can be directly translated into SAT and efficiently solved using new randomized systematic solvers. For certain computationally challenging benchmark problems this unified approach outperforms both SATPLAN and Graphplan alone. We also demonstrate that polynomialtime SAT simplification algorithms applied to the encoded problem instances are a powerful complement to the "mutex" propagation algorithm that works directly on the plan graph.

508 citations

References
More filters
Journal ArticleDOI
TL;DR: A simple universal strategy scL univ, with the property that, for any algorithm A, T ( A, scLUniv ) = O( lin A log( linA )), is described, which is the best performance that can be achieved, up to a constant factor, by any universal strategy.

281 citations

Book ChapterDOI
15 Jul 1992
TL;DR: This work can prove high efficiency (compared with other parallel theorem provers) of random competition on highly parallel architectures with thousands of processors on which no communication between the processors is necessary during run-time.
Abstract: With random competition we propose a method for parallelizing arbitrary theorem provers. We can prove high efficiency (compared with other parallel theorem provers) of random competition on highly parallel architectures with thousands of processors. This method is suited for all kinds of distributed memory architectures, particularly for large networks of high performance workstations since no communication between the processors is necessary during run-time. On a set of examples we show the performance of random competition applied to the model elimination theorem prover SETHEO.

30 citations


"Optimal speedup of Las Vegas algori..." refers background or methods in this paper

  • ...[2] describes some real-life examples of such searches, where the distribution of the running time of A(x) is wildly erratic....

    [...]

  • ...Our interest in these questions was stimulated by the practical application to theorem proving described in [2]....

    [...]