scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Optimization of blade pitch in H-rotor vertical axis wind turbines through computational fluid dynamics simulations

TL;DR: In this paper, a variable blade pitch automatic optimization platform (VBPAOP) composed of genetic algorithm and computational fluid dynamics (CFD) simulation modules is built to search for optimal blade pitches that can maximize turbine power.
About: This article is published in Applied Energy.The article was published on 2018-02-15. It has received 65 citations till now. The article focuses on the topics: Blade pitch & Pitch control.
Citations
More filters
01 Jan 2002
TL;DR: In this article, the aerodynamic design and performance of VAWTs based on the Darrieus concept is discussed, as well as future trends in design and the inherent socioeconomic and environmental friendly aspects of wind energy as an alternate source of energy.
Abstract: Wind energy is the fastest growing alternate source of energy in the world since its purely economic potential is complemented by its great positive environmental impact. The wind turbine, whether it may be a Horizontal-Axis Wind Turbine (HAWT) or a Vertical-Axis Wind Turbine (VAWT), offers a practical way to convert the wind energy into electrical or mechanical energy. Although this book focuses on the aerodynamic design and performance of VAWTs based on the Darrieus concept, it also discusses the comparison between HAWTs and VAWTs, future trends in design and the inherent socio-economic and environmental friendly aspects of wind energy as an alternate source of energy.

549 citations

Journal ArticleDOI
TL;DR: In this paper, an intelligent pitch angle controller using a multilayer perceptron artificial neural network (MLP-ANN) was proposed for the Darrieus vertical axis wind turbine (H-type VAWT).

101 citations

Journal ArticleDOI
15 Oct 2018-Energy
TL;DR: In this paper, the authors presented a computational fluid dynamics simulation of the Darrieus vertical axis wind turbine with fixed and variable pitch at different solidities and showed that variable pitch blades with high solidities are preferred when the initial self-starting torque is required.

72 citations

Journal ArticleDOI
TL;DR: In this paper, the aerodynamic effect of adding a winglet on the blade of a VAWT was studied, and it was shown that the optimal winglet can decrease the tip vortices and improve the blade's power performance by up to 31% at a tip speed ratio of 2.29.

70 citations


Cites methods from "Optimization of blade pitch in H-ro..."

  • ...[17] optimized the blade pitch using a genetic algorithm to maximize the turbine power performance....

    [...]

Journal ArticleDOI
TL;DR: In this article, an attempt is made to review the aerodynamic design parameters which influence the VAWT's aerodynamic efficiency, each parameter is discussed in detail regarding their advantages and disadvantages.
Abstract: The high emission of fossil fuels are major driving forces in renewable energy technology development. In response, the lift-type vertical axis wind turbines (VAWT) is experiencing a renewed interest for large-scale offshore wind energy generation and also for small-scale urban devices. Significant research has been published on the aerodynamic design and optimisation of VAWTs. In this paper, an attempt is made to review the aerodynamic design parameters which influence the VAWT’s aerodynamic efficiency. Each parameter is discussed in detail regarding their advantages and disadvantages. A baseline VAWT design has been put forward from this literature review to support VAWT aerodynamic analysis. Furthermore, areas of future research requiring attention have been identified to further progress the aerodynamic design and development of VAWTs.

69 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, two new two-equation eddy-viscosity turbulence models are presented, which combine different elements of existing models that are considered superior to their alternatives.
Abstract: Two new two-equation eddy-viscosity turbulence models will be presented. They combine different elements of existing models that are considered superior to their alternatives. The first model, referred to as the baseline (BSL) model, utilizes the original k-ω model of Wilcox in the inner region of the boundary layer and switches to the standard k-e model in the outer region and in free shear flows. It has a performance similar to the Wilcox model, but avoids that model's strong freestream sensitivity

15,459 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed the DES97 model, denoted DES97 from here on, which can exhibit an incorrect behavior in thin boundary layers and shallow separation regions, when the grid spacing parallel to the wall becomes less than the boundary-layer thickness.
Abstract: Detached-eddy simulation (DES) is well understood in thin boundary layers, with the turbulence model in its Reynolds-averaged Navier–Stokes (RANS) mode and flattened grid cells, and in regions of massive separation, with the turbulence model in its large-eddy simulation (LES) mode and grid cells close to isotropic. However its initial formulation, denoted DES97 from here on, can exhibit an incorrect behavior in thick boundary layers and shallow separation regions. This behavior begins when the grid spacing parallel to the wall Δ∥ becomes less than the boundary-layer thickness δ, either through grid refinement or boundary-layer thickening. The grid spacing is then fine enough for the DES length scale to follow the LES branch (and therefore lower the eddy viscosity below the RANS level), but resolved Reynolds stresses deriving from velocity fluctuations (“LES content”) have not replaced the modeled Reynolds stresses. LES content may be lacking because the resolution is not fine enough to fully support it, and/or because of delays in its generation by instabilities. The depleted stresses reduce the skin friction, which can lead to premature separation.

2,065 citations

Journal ArticleDOI
TL;DR: A review of the current state of the art in computational optimization methods applied to renewable and sustainable energy can be found in this article, which offers a clear vision of the latest research advances in this field.
Abstract: Energy is a vital input for social and economic development. As a result of the generalization of agricultural, industrial and domestic activities the demand for energy has increased remarkably, especially in emergent countries. This has meant rapid grower in the level of greenhouse gas emissions and the increase in fuel prices, which are the main driving forces behind efforts to utilize renewable energy sources more effectively, i.e. energy which comes from natural resources and is also naturally replenished. Despite the obvious advantages of renewable energy, it presents important drawbacks, such as the discontinuity of generation, as most renewable energy resources depend on the climate, which is why their use requires complex design, planning and control optimization methods. Fortunately, the continuous advances in computer hardware and software are allowing researchers to deal with these optimization problems using computational resources, as can be seen in the large number of optimization methods that have been applied to the renewable and sustainable energy field. This paper presents a review of the current state of the art in computational optimization methods applied to renewable and sustainable energy, offering a clear vision of the latest research advances in this field.

1,394 citations

Book
01 Nov 1987
TL;DR: This paper presents an Explicity Formulation for Cubic Beta-splines, a simple Approximation technique for Uniform Cubic B-spline Surfaces, and discusses its applications in Rendering and Evaluation and simulation.
Abstract: 1 Introduction 2 Preliminaries 3 Hermite and Cubic Spline Interpolation 4 A Simple Approximation Technique - Uniform Cubic B-splines 5 Splines in a More General Setting 6 The One-Sided Basis 7 Divided Differences 8 General B-splines 9 B-spline Properties 10 Bezier Curves 11. Knot Insertion 12 The Oslo Algorithm 13 Parametric vs. Geometric Continuity 14 Uniformly-Shaped Beta-spline Surfaces 15 Geometric Continuity, Reparametrization, and the Chain Rule 16 Continuously-Shaped Beta-splines 17 An Explicity Formulation for Cubic Beta-splines 18 Discretely-Shaped Beta-splines 19 B-spline Representations for Beta-splines 20 Rendering and Evaluation 21 Selected Applications

1,292 citations

01 Jan 2002
TL;DR: In this article, the aerodynamic design and performance of VAWTs based on the Darrieus concept is discussed, as well as future trends in design and the inherent socioeconomic and environmental friendly aspects of wind energy as an alternate source of energy.
Abstract: Wind energy is the fastest growing alternate source of energy in the world since its purely economic potential is complemented by its great positive environmental impact. The wind turbine, whether it may be a Horizontal-Axis Wind Turbine (HAWT) or a Vertical-Axis Wind Turbine (VAWT), offers a practical way to convert the wind energy into electrical or mechanical energy. Although this book focuses on the aerodynamic design and performance of VAWTs based on the Darrieus concept, it also discusses the comparison between HAWTs and VAWTs, future trends in design and the inherent socio-economic and environmental friendly aspects of wind energy as an alternate source of energy.

549 citations