scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Optimized constellations for two-way wireless relaying with physical network coding

01 Jun 2009-IEEE Journal on Selected Areas in Communications (Institute of Electrical and Electronics Engineers)-Vol. 27, Iss: 5, pp 773-787
TL;DR: The proposed modulation scheme can significantly improve end-to-end throughput for two-way relaying systems and is applicable to a relaying system using higher-level modulations of 16QAM in the MA stage.
Abstract: We investigate modulation schemes optimized for two-way wireless relaying systems, for which network coding is employed at the physical layer. We consider network coding based on denoise-and-forward (DNF) protocol, which consists of two stages: multiple access (MA) stage, where two terminals transmit simultaneously towards a relay, and broadcast (BC) stage, where the relay transmits towards the both terminals. We introduce a design principle of modulation and network coding, considering the superposed constellations during the MA stage. For the case of QPSK modulations at the MA stage, we show that QPSK constellations with an exclusive-or (XOR) network coding do not always offer the best transmission for the BC stage, and that there are several channel conditions in which unconventional 5-ary constellations lead to a better throughput performance. Through the use of sphere packing, we optimize the constellation for such an irregular network coding. We further discuss the design issue of the modulation in the case when the relay exploits diversity receptions such as multiple-antenna diversity and path diversity in frequency-selective fading. In addition, we apply our design strategy to a relaying system using higher-level modulations of 16QAM in the MA stage. Performance evaluations confirm that the proposed scheme can significantly improve end-to-end throughput for two-way relaying systems.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A theoretical analysis of bit error rate (BER) expression of adaptive M-ary quadrature amplitude modulation (M-QAM) for multiple-input multiple-output (MIMO) Y channels, where three users exchange independent messages with each other via a relay within two time slots is proposed.
Abstract: A theoretical analysis of bit error rate (BER) expression of adaptive M-ary quadrature amplitude modulation (M-QAM) for multiple-input multiple-output (MIMO) Y channels, where three users exchange independent messages with each other via a relay within two time slots, is proposed. Performance evaluation shows that the analytical BER closely matches the simulated one, particularly at high signal-to-noise ratios (SNRs).

3 citations


Cites background or methods from "Optimized constellations for two-wa..."

  • ...INTRODUCTION NOWADAYS, the two-way relaying channel [1][2] is one of the most important applications of network coding....

    [...]

  • ...We consider an XOR-DNF mapping consisting of a denoising 1089-7798/12$31.00 c© 2012 IEEE mapper D as bi = D ( b[j,i], b[i,j] ) = ( b[j,i] ⊕ b[i,j] ) and the constellation mapper C as ŝi = C (bi), where ⊕ denotes the bit-wise XOR, and b[j,i] and b[i,j] are the Gray-coded bit assignments of s[j,i] and s[i,j], respectively....

    [...]

  • ...Given all the beamforming vectors, the combining vector w1 is defined as w1 = 〈 M1H[R,1]v[2,1] 〉 , (32) where 〈x〉 = x|x| denotes the normalization operation on vector x and M1 = I − G1(GH1 G1)−1GH1 , (33) G1 = [ H[R,2]v[3,2],H[R,3]v[1,3] ] ....

    [...]

  • ...Therefore, with a proper normalization/scaling, we can take the first n elements of q7 to obtain u1, the next m elements for v[2,1] and the last m elements for v[1,2]....

    [...]

  • ...Therefore, u1, v[2,1] and v[1,2] are uniquely determined during the MA stage....

    [...]

Proceedings ArticleDOI
01 Dec 2017
TL;DR: A distributed consensus-based estimator of the network state which operates on a common signal space shared by all nodes in the network is proposed which allows each node to find the global network state based only on local neighbor superposed pilot observation.
Abstract: Wireless Physical Layer Network Coding (WPNC) network nodes determine their front-end, back-end, and node processing operation based on the knowledge of the global Hierarchical Network Transfer Function (H-NTF). The H-NTF can be derived from the network connectivity state and it is essential to set up properly WPNC processing at each node. The data payload in WPNC network uses a common signal space of mutually interacting signals superposing on the receive node antenna. There are no orthogonalized communication links that would allow traditional control-data signaling based approaches to determine the network state. The procedure where each node establishes a complete picture of the network state must be performed before the payload phase such that the superposing non-orthogonal pilot signals fully respect the WPNC paradigm. This paper proposes a distributed consensus-based estimator of the network state which operates on a common signal space shared by all nodes in the network. The algorithm allows each node to find the global network state based only on local neighbor superposed pilot observation.

3 citations

Journal ArticleDOI
25 Apr 2016
TL;DR: New signal constellation designs are investigated to mitigate fading correlation and maximize the capacity and error performance of multiuser MIMO MU-MIMO over correlated channels, which is a major research challenge.
Abstract: Channels' correlation has direct impact to degrade the capacity and reliability of multiple-input multiple-output MIMO systems considerably. In this paper, new signal constellation designs are investigated to mitigate fading correlation and maximize the capacity and error performance of multiuser MIMO MU-MIMO over correlated channels, which is a major research challenge. Two methods are studied in a novel constellation constrained MU-MIMO approach, namely, unequal power allocation and rotated constellation. Based on principles of maximizing the minimum Euclidean distance dmin of composite received signals, users' data can be recovered using maximum likelihood joint detection irrespective of correlation values. Compared with the identical constellation scenario in conventional MU-MIMO, it is shown that constellation rearrangement of transmitted signals has direct impact to resolve the detection ambiguity when the channel difference is not sufficient, particularly in moderate to high correlations. Extensive analysis and simulation results demonstrate the superiority of proposed technique to capture most of the promised gains of multiantenna systems and application for future wireless communications. Copyright © 2014 John Wiley & Sons, Ltd.

3 citations


Cites background from "Optimized constellations for two-wa..."

  • ...In [31], optimized signal constellation is proposed with network coding for two-way wireless relaying applications....

    [...]

Journal ArticleDOI
TL;DR: A non-pilot based H-MAC channel phase estimator for 2 BPSK alphabet sources using a gradient additive update solver and the indicator function is derived in exact closed form and in approximations for low and high SNR.
Abstract: This paper focuses on the channel state estimation (CSE) problem in parametrized Hierarchical MAC (H-MAC) stage in Wireless Physical Layer Network Coding (WPNC) networks with Hierarchical Decode and Forward (HDF) relay strategy. We derive a non-pilot based H-MAC channel phase estimator for 2 BPSK alphabet sources. The CSE is aided only by the knowledge of H-data decisions. At HDF relay, there is no information on individual source symbols available. The estimator is obtained by a marginalization over the hierarchical dispersion. The estimator uses a gradient additive update solver and the indicator function (gradient) is derived in exact closed form and in approximations for low and high SNR. We analyze the properties of the equivalent solver model, particularly the equivalent gradient detector characteristics and its main stable domain properties, and also the detector gain and equivalent noise properties under a variety of channel parameterization scenarios.

3 citations

Patent
Rongdao Yu1, Sheng Liu1
05 Dec 2014
TL;DR: In this article, a signal-receiving node demodulates a first signal received from a local end to obtain a first log-likelihood ratio, and then further decodes the second signal by using the prior log likelihood ratio to obtain the third signal.
Abstract: The application provides a receiving method in cooperative communications. A signal-receiving node demodulates a first signal received from a local end to obtain a first log-likelihood ratio. The signal-receiving node further demodulates a second signal received from a relay node to obtain a second log-likelihood ratio. The second signal is a signal obtained by the relay node through network coding the first signal and a third signal received from a peer end. The signal-receiving node calculates a prior log-likelihood ratio according to the first log-likelihood ratio and the second log-likelihood ratio, and decodes the second signal by using the prior log-likelihood ratio to obtain the third signal.

3 citations

References
More filters
Book
01 Jan 1991
TL;DR: The author examines the role of entropy, inequality, and randomness in the design of codes and the construction of codes in the rapidly changing environment.
Abstract: Preface to the Second Edition. Preface to the First Edition. Acknowledgments for the Second Edition. Acknowledgments for the First Edition. 1. Introduction and Preview. 1.1 Preview of the Book. 2. Entropy, Relative Entropy, and Mutual Information. 2.1 Entropy. 2.2 Joint Entropy and Conditional Entropy. 2.3 Relative Entropy and Mutual Information. 2.4 Relationship Between Entropy and Mutual Information. 2.5 Chain Rules for Entropy, Relative Entropy, and Mutual Information. 2.6 Jensen's Inequality and Its Consequences. 2.7 Log Sum Inequality and Its Applications. 2.8 Data-Processing Inequality. 2.9 Sufficient Statistics. 2.10 Fano's Inequality. Summary. Problems. Historical Notes. 3. Asymptotic Equipartition Property. 3.1 Asymptotic Equipartition Property Theorem. 3.2 Consequences of the AEP: Data Compression. 3.3 High-Probability Sets and the Typical Set. Summary. Problems. Historical Notes. 4. Entropy Rates of a Stochastic Process. 4.1 Markov Chains. 4.2 Entropy Rate. 4.3 Example: Entropy Rate of a Random Walk on a Weighted Graph. 4.4 Second Law of Thermodynamics. 4.5 Functions of Markov Chains. Summary. Problems. Historical Notes. 5. Data Compression. 5.1 Examples of Codes. 5.2 Kraft Inequality. 5.3 Optimal Codes. 5.4 Bounds on the Optimal Code Length. 5.5 Kraft Inequality for Uniquely Decodable Codes. 5.6 Huffman Codes. 5.7 Some Comments on Huffman Codes. 5.8 Optimality of Huffman Codes. 5.9 Shannon-Fano-Elias Coding. 5.10 Competitive Optimality of the Shannon Code. 5.11 Generation of Discrete Distributions from Fair Coins. Summary. Problems. Historical Notes. 6. Gambling and Data Compression. 6.1 The Horse Race. 6.2 Gambling and Side Information. 6.3 Dependent Horse Races and Entropy Rate. 6.4 The Entropy of English. 6.5 Data Compression and Gambling. 6.6 Gambling Estimate of the Entropy of English. Summary. Problems. Historical Notes. 7. Channel Capacity. 7.1 Examples of Channel Capacity. 7.2 Symmetric Channels. 7.3 Properties of Channel Capacity. 7.4 Preview of the Channel Coding Theorem. 7.5 Definitions. 7.6 Jointly Typical Sequences. 7.7 Channel Coding Theorem. 7.8 Zero-Error Codes. 7.9 Fano's Inequality and the Converse to the Coding Theorem. 7.10 Equality in the Converse to the Channel Coding Theorem. 7.11 Hamming Codes. 7.12 Feedback Capacity. 7.13 Source-Channel Separation Theorem. Summary. Problems. Historical Notes. 8. Differential Entropy. 8.1 Definitions. 8.2 AEP for Continuous Random Variables. 8.3 Relation of Differential Entropy to Discrete Entropy. 8.4 Joint and Conditional Differential Entropy. 8.5 Relative Entropy and Mutual Information. 8.6 Properties of Differential Entropy, Relative Entropy, and Mutual Information. Summary. Problems. Historical Notes. 9. Gaussian Channel. 9.1 Gaussian Channel: Definitions. 9.2 Converse to the Coding Theorem for Gaussian Channels. 9.3 Bandlimited Channels. 9.4 Parallel Gaussian Channels. 9.5 Channels with Colored Gaussian Noise. 9.6 Gaussian Channels with Feedback. Summary. Problems. Historical Notes. 10. Rate Distortion Theory. 10.1 Quantization. 10.2 Definitions. 10.3 Calculation of the Rate Distortion Function. 10.4 Converse to the Rate Distortion Theorem. 10.5 Achievability of the Rate Distortion Function. 10.6 Strongly Typical Sequences and Rate Distortion. 10.7 Characterization of the Rate Distortion Function. 10.8 Computation of Channel Capacity and the Rate Distortion Function. Summary. Problems. Historical Notes. 11. Information Theory and Statistics. 11.1 Method of Types. 11.2 Law of Large Numbers. 11.3 Universal Source Coding. 11.4 Large Deviation Theory. 11.5 Examples of Sanov's Theorem. 11.6 Conditional Limit Theorem. 11.7 Hypothesis Testing. 11.8 Chernoff-Stein Lemma. 11.9 Chernoff Information. 11.10 Fisher Information and the Cram-er-Rao Inequality. Summary. Problems. Historical Notes. 12. Maximum Entropy. 12.1 Maximum Entropy Distributions. 12.2 Examples. 12.3 Anomalous Maximum Entropy Problem. 12.4 Spectrum Estimation. 12.5 Entropy Rates of a Gaussian Process. 12.6 Burg's Maximum Entropy Theorem. Summary. Problems. Historical Notes. 13. Universal Source Coding. 13.1 Universal Codes and Channel Capacity. 13.2 Universal Coding for Binary Sequences. 13.3 Arithmetic Coding. 13.4 Lempel-Ziv Coding. 13.5 Optimality of Lempel-Ziv Algorithms. Compression. Summary. Problems. Historical Notes. 14. Kolmogorov Complexity. 14.1 Models of Computation. 14.2 Kolmogorov Complexity: Definitions and Examples. 14.3 Kolmogorov Complexity and Entropy. 14.4 Kolmogorov Complexity of Integers. 14.5 Algorithmically Random and Incompressible Sequences. 14.6 Universal Probability. 14.7 Kolmogorov complexity. 14.9 Universal Gambling. 14.10 Occam's Razor. 14.11 Kolmogorov Complexity and Universal Probability. 14.12 Kolmogorov Sufficient Statistic. 14.13 Minimum Description Length Principle. Summary. Problems. Historical Notes. 15. Network Information Theory. 15.1 Gaussian Multiple-User Channels. 15.2 Jointly Typical Sequences. 15.3 Multiple-Access Channel. 15.4 Encoding of Correlated Sources. 15.5 Duality Between Slepian-Wolf Encoding and Multiple-Access Channels. 15.6 Broadcast Channel. 15.7 Relay Channel. 15.8 Source Coding with Side Information. 15.9 Rate Distortion with Side Information. 15.10 General Multiterminal Networks. Summary. Problems. Historical Notes. 16. Information Theory and Portfolio Theory. 16.1 The Stock Market: Some Definitions. 16.2 Kuhn-Tucker Characterization of the Log-Optimal Portfolio. 16.3 Asymptotic Optimality of the Log-Optimal Portfolio. 16.4 Side Information and the Growth Rate. 16.5 Investment in Stationary Markets. 16.6 Competitive Optimality of the Log-Optimal Portfolio. 16.7 Universal Portfolios. 16.8 Shannon-McMillan-Breiman Theorem (General AEP). Summary. Problems. Historical Notes. 17. Inequalities in Information Theory. 17.1 Basic Inequalities of Information Theory. 17.2 Differential Entropy. 17.3 Bounds on Entropy and Relative Entropy. 17.4 Inequalities for Types. 17.5 Combinatorial Bounds on Entropy. 17.6 Entropy Rates of Subsets. 17.7 Entropy and Fisher Information. 17.8 Entropy Power Inequality and Brunn-Minkowski Inequality. 17.9 Inequalities for Determinants. 17.10 Inequalities for Ratios of Determinants. Summary. Problems. Historical Notes. Bibliography. List of Symbols. Index.

45,034 citations


"Optimized constellations for two-wa..." refers background in this paper

  • ...Since Shannon firstly considered a two–way channel in [10], some theoretical investigations on the bidirectional relaying have emerged so far [ 11 ]....

    [...]

Journal ArticleDOI
TL;DR: This work reveals that it is in general not optimal to regard the information to be multicast as a "fluid" which can simply be routed or replicated, and by employing coding at the nodes, which the work refers to as network coding, bandwidth can in general be saved.
Abstract: We introduce a new class of problems called network information flow which is inspired by computer network applications. Consider a point-to-point communication network on which a number of information sources are to be multicast to certain sets of destinations. We assume that the information sources are mutually independent. The problem is to characterize the admissible coding rate region. This model subsumes all previously studied models along the same line. We study the problem with one information source, and we have obtained a simple characterization of the admissible coding rate region. Our result can be regarded as the max-flow min-cut theorem for network information flow. Contrary to one's intuition, our work reveals that it is in general not optimal to regard the information to be multicast as a "fluid" which can simply be routed or replicated. Rather, by employing coding at the nodes, which we refer to as network coding, bandwidth can in general be saved. This finding may have significant impact on future design of switching systems.

8,533 citations


"Optimized constellations for two-wa..." refers background in this paper

  • ...W IRELESS network coding has recently received a lot of attention in research community, although the concept of network coding has been around for almost a decade [2]....

    [...]

Book
01 Dec 1987
TL;DR: The second edition of this book continues to pursue the question: what is the most efficient way to pack a large number of equal spheres in n-dimensional Euclidean space?
Abstract: The second edition of this book continues to pursue the question: what is the most efficient way to pack a large number of equal spheres in n-dimensional Euclidean space? The authors also continue to examine related problems such as the kissing number problem, the covering problem, the quantizing problem, and the classification of lattices and quadratic forms. Like the first edition, the second edition describes the applications of these questions to other areas of mathematics and science such as number theory, coding theory, group theory, analog-to-digital conversion and data compression, n-dimensional crystallography, and dual theory and superstring theory in physics.

4,564 citations

Journal ArticleDOI
TL;DR: The results show that using COPE at the forwarding layer, without modifying routing and higher layers, increases network throughput, and the gains vary from a few percent to several folds depending on the traffic pattern, congestion level, and transport protocol.
Abstract: This paper proposes COPE, a new architecture for wireless mesh networks. In addition to forwarding packets, routers mix (i.e., code) packets from different sources to increase the information content of each transmission. We show that intelligently mixing packets increases network throughput. Our design is rooted in the theory of network coding. Prior work on network coding is mainly theoretical and focuses on multicast traffic. This paper aims to bridge theory with practice; it addresses the common case of unicast traffic, dynamic and potentially bursty flows, and practical issues facing the integration of network coding in the current network stack. We evaluate our design on a 20-node wireless network, and discuss the results of the first testbed deployment of wireless network coding. The results show that using COPE at the forwarding layer, without modifying routing and higher layers, increases network throughput. The gains vary from a few percent to several folds depending on the traffic pattern, congestion level, and transport protocol.

2,190 citations

Journal ArticleDOI
B. Rankov1, Armin Wittneben1
TL;DR: Two new half-duplex relaying protocols are proposed that avoid the pre-log factor one-half in corresponding capacity expressions and it is shown that both protocols recover a significant portion of the half- duplex loss.
Abstract: We study two-hop communication protocols where one or several relay terminals assist in the communication between two or more terminals. All terminals operate in half-duplex mode, hence the transmission of one information symbol from the source terminal to the destination terminal occupies two channel uses. This leads to a loss in spectral efficiency due to the pre-log factor one-half in corresponding capacity expressions. We propose two new half-duplex relaying protocols that avoid the pre-log factor one-half. Firstly, we consider a relaying protocol where a bidirectional connection between two terminals is established via one amplify-and-forward (AF) or decode-and-forward (DF) relay (two-way relaying). We also extend this protocol to a multi-user scenario, where multiple terminals communicate with multiple partner terminals via several orthogonalize-and-forward (OF) relay terminals, i.e., the relays orthogonalize the different two-way transmissions by a distributed zero-forcing algorithm. Secondly, we propose a relaying protocol where two relays, either AF or DF, alternately forward messages from a source terminal to a destination terminal (two-path relaying). It is shown that both protocols recover a significant portion of the half-duplex loss

1,728 citations


"Optimized constellations for two-wa..." refers background in this paper

  • ...In [6, 18 ], the amplify–and–forward (AF) bidirectional relaying is introduced, where the terminal nodes simultaneously transmit to the relaying node, and subsequently the relay broadcasts the received signal after amplification....

    [...]