scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Optimizing Active Sites for High CO Selectivity during CO2 Hydrogenation over Supported Nickel Catalysts

TL;DR: In this paper, the selectivity of supported Ni catalysts prepared by the traditional impregnation method was investigated and it was shown that the selected Ni catalyst has a high selectivity.
Abstract: Controlling the selectivity of CO2 hydrogenation catalysts is a fundamental challenge. In this study, the selectivity of supported Ni catalysts prepared by the traditional impregnation method was f...
Citations
More filters
Journal ArticleDOI
04 Jun 2021
TL;DR: A reduction–oxidation cycle that induces nearly 5-fold activity enhancement on Pt/TiO2 SACs for the reverse water–gas shift (rWGS) reaction is reported, offering desired understanding on the rarely explored dynamic chemical environment of supported single metal atoms and its catalytic consequences.
Abstract: Single-atom catalysts (SACs) often exhibit dynamic responses to the reaction and pretreatment environment that affect their activity. The lack of understanding of these behaviors hinders the development of effective, stable SACs, and makes their investigations rather difficult. Here we report a reduction-oxidation cycle that induces nearly 5-fold activity enhancement on Pt/TiO2 SACs for the reverse water-gas shift (rWGS) reaction. We combine microscopy (STEM) and spectroscopy (XAS and IR) studies with kinetic measurements, to convincingly show that the low activity on the fresh SAC is a result of limited accessibility of Pt single atoms (Pt1) due to high Pt-O coordination. The reduction step mobilizes Pt1, forming small, amorphous, and unstable Pt aggregates. The reoxidation step redisperses Pt into Pt1, but in a new, less O-coordinated chemical environment that makes the single metal atoms more accessible and, consequently, more active. After the cycle, the SAC exhibits superior rWGS activity to nonatomically dispersed Pt/TiO2. During the rWGS, the activated Pt1 experience slow deactivation, but can be reactivated by mild oxidation. This work demonstrates a clear picture of how the structural evolution of Pt/TiO2 SACs leads to ultimate catalytic efficiency, offering desired understanding on the rarely explored dynamic chemical environment of supported single metal atoms and its catalytic consequences.

31 citations

Journal ArticleDOI
TL;DR: In this article , the authors examined the interrelation between active sites and reaction pathways in Ni-catalyzed CO2 hydrogenation and identified the crucial intermediates that impacted the product selectivity.
Abstract: Controlling the selectivity of CO2 hydrogenation by catalysis is a fundamental challenge. This study examines the interrelation between active sites and reaction pathways in Ni-catalyzed CO2 hydrogenation. The alloying of Ni with Zn to charged (Niσ––Znσ+) active sites modifies the electronic structure and d-band center, weakens the interaction with CO/H2, and preferentially catalyzes the reverse water gas shift to CO with the thermodynamically favored methanation pathway switched off. The charged dual sites can stabilize the activated CO2 species in a η2(C, O) bridge configuration, directly dissociate the C═O bond to *CO, and promote CO desorption. The mechanistic investigation has elucidated the reaction pathways in the Ni-catalyzed CO2 hydrogenation and identified the crucial intermediates that impacted the product selectivity, which can provide a theoretical guide for the Ni-based catalyst design.

27 citations

Posted ContentDOI
16 Aug 2021-ChemRxiv
TL;DR: Comparison of the model predictions with experimental data on a Ni/SiO2 catalyst find a feasible set of microkinetic mechanisms that are in quantitative agreement with the measured data, without relying on explicit parameter optimization.
Abstract: Automatic mechanism generation is used to determine mechanisms for the CO2 hydrogenation on Ni(111) in a two-stage process while considering the correlated uncertainty in DFT-based energetic parameters systematically. In a coarse stage, all the possible chemistry is explored with gas-phase products down to the ppb level, while a refined stage discovers the core methanation submechanism. Five thousand unique mechanisms were generated, which contain minor perturbations in all parameters. Global uncertainty assessment, global sensitivity analysis, and degree of rate control analysis are performed to study the effect of this parametric uncertainty on the microkinetic model predictions. Comparison of the model predictions with experimental data on a Ni/SiO2 catalyst find a feasible set of microkinetic mechanisms within the correlated uncertainty space that are in quantitative agreement with the measured data, without relying on explicit parameter optimization. Global uncertainty and sensitivity analyses provide tools to determine the pathways and key factors that control the methanation activity within the parameter space. Together, these methods reveal that the degree of rate control approach can be misleading if parametric uncertainty is not considered. The procedure of considering uncertainties in the automated mechanism generation is not unique to CO2 methanation and can be easily extended to other challenging heterogeneously catalyzed reactions.

25 citations

Journal ArticleDOI
TL;DR: In this paper, the authors characterized surface hydroxyl formation on metallic Ni sites and Ni-SiO2 interfacial region of Ni/SiO 2 during CO2 hydrogenation with the aid of H2-TPR, CO-Tpr, quasi in situ XPS and in situ DRIFTS of adsorbed CO.

21 citations

References
More filters
Journal ArticleDOI
TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Abstract: Generalized gradient approximations (GGA’s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. [S0031-9007(96)01479-2] PACS numbers: 71.15.Mb, 71.45.Gm Kohn-Sham density functional theory [1,2] is widely used for self-consistent-field electronic structure calculations of the ground-state properties of atoms, molecules, and solids. In this theory, only the exchange-correlation energy EXC › EX 1 EC as a functional of the electron spin densities n"srd and n#srd must be approximated. The most popular functionals have a form appropriate for slowly varying densities: the local spin density (LSD) approximation Z d 3 rn e unif

146,533 citations

Journal ArticleDOI
Peter E. Blöchl1
TL;DR: An approach for electronic structure calculations is described that generalizes both the pseudopotential method and the linear augmented-plane-wave (LAPW) method in a natural way and can be used to treat first-row and transition-metal elements with affordable effort and provides access to the full wave function.
Abstract: An approach for electronic structure calculations is described that generalizes both the pseudopotential method and the linear augmented-plane-wave (LAPW) method in a natural way. The method allows high-quality first-principles molecular-dynamics calculations to be performed using the original fictitious Lagrangian approach of Car and Parrinello. Like the LAPW method it can be used to treat first-row and transition-metal elements with affordable effort and provides access to the full wave function. The augmentation procedure is generalized in that partial-wave expansions are not determined by the value and the derivative of the envelope function at some muffin-tin radius, but rather by the overlap with localized projector functions. The pseudopotential approach based on generalized separable pseudopotentials can be regained by a simple approximation.

61,450 citations

Journal ArticleDOI
TL;DR: In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Abstract: The formal relationship between ultrasoft (US) Vanderbilt-type pseudopotentials and Bl\"ochl's projector augmented wave (PAW) method is derived. It is shown that the total energy functional for US pseudopotentials can be obtained by linearization of two terms in a slightly modified PAW total energy functional. The Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional. A simple way to implement the PAW method in existing plane-wave codes supporting US pseudopotentials is pointed out. In addition, critical tests are presented to compare the accuracy and efficiency of the PAW and the US pseudopotential method with relaxed core all electron methods. These tests include small molecules $({\mathrm{H}}_{2}{,\mathrm{}\mathrm{H}}_{2}{\mathrm{O},\mathrm{}\mathrm{Li}}_{2}{,\mathrm{}\mathrm{N}}_{2}{,\mathrm{}\mathrm{F}}_{2}{,\mathrm{}\mathrm{BF}}_{3}{,\mathrm{}\mathrm{SiF}}_{4})$ and several bulk systems (diamond, Si, V, Li, Ca, ${\mathrm{CaF}}_{2},$ Fe, Co, Ni). Particular attention is paid to the bulk properties and magnetic energies of Fe, Co, and Ni.

57,691 citations

Journal ArticleDOI
TL;DR: In this article, a method for generating sets of special points in the Brillouin zone which provides an efficient means of integrating periodic functions of the wave vector is given, where the integration can be over the entire zone or over specified portions thereof.
Abstract: A method is given for generating sets of special points in the Brillouin zone which provides an efficient means of integrating periodic functions of the wave vector. The integration can be over the entire Brillouin zone or over specified portions thereof. This method also has applications in spectral and density-of-state calculations. The relationships to the Chadi-Cohen and Gilat-Raubenheimer methods are indicated.

51,059 citations

Journal ArticleDOI
TL;DR: A detailed description and comparison of algorithms for performing ab-initio quantum-mechanical calculations using pseudopotentials and a plane-wave basis set is presented in this article. But this is not a comparison of our algorithm with the one presented in this paper.

47,666 citations