scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Optimizing the Reaction Conditions for the Formation of Fumarate via Trans-Hydrogenation

TL;DR: In this paper, the authors investigate the solution preparation protocols and the reaction conditions on the rate and yield of fumarate formation, and report conditions to reproducibly yield over 100mM fumarate on a short timescale, and discuss aspects of the protocol that hinder the formation of fumarates.
Abstract: Parahydrogen-induced polarization is a hyperpolarization method for enhancing nuclear magnetic resonance signals by chemical reactions/interactions involving the para spin isomer of hydrogen gas. This method has allowed for biomolecules to be hyperpolarized to such a level that they can be used for real time in vivo metabolic imaging. One particularly promising example is fumarate, which can be rapidly and efficiently hyperpolarized at low cost by hydrogenating an acetylene dicarboxylate precursor molecule using parahydrogen. The reaction is relatively slow compared to the timescale on which the hyperpolarization relaxes back to thermal equilibrium, and an undesirable 2nd hydrogenation step can convert the fumarate into succinate. To date, the hydrogenation chemistry has not been thoroughly investigated, so previous work has been inconsistent in the chosen reaction conditions in the search for ever-higher reaction rate and yield. In this work we investigate the solution preparation protocols and the reaction conditions on the rate and yield of fumarate formation. We report conditions to reproducibly yield over 100 mM fumarate on a short timescale, and discuss aspects of the protocol that hinder the formation of fumarate or lead to irreproducible results. We also provide experimental procedures and recommendations for performing reproducible kinetics experiments in which hydrogen gas is repeatedly bubbled into an aqueous solution, overcoming challenges related to the viscosity and surface tension of the water.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a weak oscillating low-frequency magnetic field (WOLF) was used for the generation of strong nuclear hyperpolarization of 13C nuclei, starting from the nuclear singlet polarization of a 1H spin pair associated with the enriched para-spin isomer of hydrogen gas.
Abstract: Coupled pairs of nuclear spin-1/2 support one singlet state and three triplet states. Transitions between the singlet state and one of the triplet states may be driven by an oscillating low-frequency magnetic field, in the presence of couplings to a third nuclear spin, and a weak bias magnetic field. The oscillating field is in the same direction as the bias field and is called a WOLF (Weak Oscillating Low Field) pulse. Application of a WOLF pulse allows for the generation of strong nuclear hyperpolarization of 13C nuclei, starting from the nuclear singlet polarization of a 1H spin pair, associated with the enriched para-spin isomer of hydrogen gas. Hyperpolarization is demonstrated for two molecular systems.

14 citations

Journal ArticleDOI
TL;DR: Parahydrogen induced polarization (PHIP) is an efficient and cost-effective hyperpolarization method, which has widespread applications in Chemistry, Physics, Biochemistry, Biophysics, and Medical Imaging as mentioned in this paper .
Abstract: Nuclear Magnetic Resonance (NMR) spectroscopy and Magnetic Resonance Imaging (MRI) are analytical and diagnostic tools that are essential for a very broad field of applications, ranging from chemical analytics, to non-destructive testing of materials and the investigation of molecular dynamics, to in vivo medical diagnostics and drug research. One of the major challenges in their application to many problems is the inherent low sensitivity of magnetic resonance, which results from the small energy-differences of the nuclear spin-states. At thermal equilibrium at room temperature the normalized population difference of the spin-states, called the Boltzmann polarization, is only on the order of 10−5. Parahydrogen induced polarization (PHIP) is an efficient and cost-effective hyperpolarization method, which has widespread applications in Chemistry, Physics, Biochemistry, Biophysics, and Medical Imaging. PHIP creates its signal-enhancements by means of a reversible (SABRE) or irreversible (classic PHIP) chemical reaction between the parahydrogen, a catalyst, and a substrate. Here, we first give a short overview about parahydrogen-based hyperpolarization techniques and then review the current literature on method developments and applications of various flavors of the PHIP experiment.

13 citations

Journal ArticleDOI
TL;DR: In this article , the authors demonstrate the integrated generation and detection of a hyperpolarized metabolite on a microfluidic chip, and demonstrate two methods for mitigating singlet-triplet mixing effects which otherwise reduce the achieved polarization level.
Abstract: Microfluidic systems hold great potential for the study of live microscopic cultures of cells, tissue samples, and small organisms. Integration of hyperpolarization would enable quantitative studies of metabolism in such volume limited systems by high-resolution NMR spectroscopy. We demonstrate, for the first time, the integrated generation and detection of a hyperpolarized metabolite on a microfluidic chip. The metabolite [1-13C]fumarate is produced in a nuclear hyperpolarized form by (i) introducing para-enriched hydrogen into the solution by diffusion through a polymer membrane, (ii) reaction with a substrate in the presence of a ruthenium-based catalyst, and (iii) conversion of the singlet-polarized reaction product into a magnetized form by the application of a radiofrequency pulse sequence, all on the same microfluidic chip. The microfluidic device delivers a continuous flow of hyperpolarized material at the 2.5 μL/min scale, with a polarization level of 4%. We demonstrate two methods for mitigating singlet-triplet mixing effects which otherwise reduce the achieved polarization level.

5 citations

Posted Content
TL;DR: In this paper, the authors demonstrate the integrated generation and detection of a hyperpolarized metabolite on a microfluidic chip, and demonstrate two methods for mitigating singlet-triplet mixing effects which otherwise reduce the achieved polarisation level.
Abstract: Microfluidic systems hold great potential for the study of live microscopic cultures of cells, tissue samples, and small organisms. Integration of hyperpolarisation would enable quantitative studies of metabolism in such volume limited systems by high-resolution NMR spectroscopy. We demonstrate, for the first time, the integrated generation and detection of a hyperpolarised metabolite on a microfluidic chip. The metabolite 1-$^{13}$C-fumarate is produced in a nuclear hyperpolarised form by (i) introducing para-enriched hydrogen into the solution by diffusion through a polymer membrane, (ii) reaction with a substrate in the presence of a ruthenium-based catalyst, and (iii) conversion of the singlet-polarised reaction product into a magnetised form by the application of a radiofrequency pulse sequence, all on the same microfluidic chip. The microfluidic device delivers a continuous flow of hyperpolarised material at the 2.5 $\mu\text{L}/\text{min}$ scale, with a polarisation level of 4%. We demonstrate two methods for mitigating singlet-triplet mixing effects which otherwise reduce the achieved polarisation level.

5 citations

Journal ArticleDOI
TL;DR: In this paper , a method for the preparation of hyperpolarized [1-13C]fumarate as a contrast agent for preclinical in vivo MRI, using parahydrogen-induced polarization (PHIP), was presented.
Abstract: We present a versatile method for the preparation of hyperpolarized [1-13C]fumarate as a contrast agent for preclinical in vivo MRI, using parahydrogen-induced polarization (PHIP). To benchmark this process, we compared a prototype PHIP polarizer to a state-of-the-art dissolution dynamic nuclear polarization (d-DNP) system. We found comparable polarization, volume, and concentration levels of the prepared solutions, while the preparation effort is significantly lower for the PHIP process, which can provide a preclinical dose every 10 min, opposed to around 90 min for d-DNP systems. With our approach, a 100 mM [1-13C]-fumarate solution of volumes up to 3 mL with 13-20% 13C-hyperpolarization after purification can be produced. The purified solution has a physiological pH, while the catalyst, the reaction side products, and the precursor material concentrations are reduced to nontoxic levels, as confirmed in a panel of cytotoxicity studies. The in vivo usage of the hyperpolarized fumarate as a perfusion agent in healthy mice and the metabolic conversion of fumarate to malate in tumor-bearing mice developing regions with necrotic cell death is demonstrated. Furthermore, we present a one-step synthesis to produce the 13C-labeled precursor for the hydrogenation reaction with high yield, starting from 13CO2 as a cost-effective source for 13C-labeled compounds.

2 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that if the electron spin resonance of the conduction electrons is saturated, the nuclei will be polarized to the same degree they would be if their gyromagnetic ratio were that of electron spin.
Abstract: A new method for polarizing nuclei, applicable only to metals, is proposed. It is shown that if the electron spin resonance of the conduction electrons is saturated, the nuclei will be polarized to the same degree they would be if their gyromagnetic ratio were that of the electron spin. This action results from the paramagnetic relaxation processes that occur by means of the hyperfine structure interaction between electron and nuclear spins. A shift of the electron spin resonance due to the same interaction will occur for large amounts of polarization and should provide a direct indication of the degree of polarization.

1,381 citations

Journal ArticleDOI
TL;DR: The PASADENA effect as mentioned in this paper is a method for transient high-sensitivity proton spin-labelling by molecular addition of dihydrogen, which can be converted to magnetization observable by NMR.
Abstract: The PASADENA effect is a method for transient high-sensitivity proton spin-labelling by molecular addition of dihydrogen. When the parahydrogen mole fraction differs from the high-temperature limit of 1/4, this population difference constitutes a form of spin order which can be converted to magnetization observable by NMR. Large NMR signals are observed, if subsequent to the hydrogen addition, the two protons experience magnetic inequivalence and spin-spin coupling and if observation is made before spin-lattice relaxation restores the equilibrium spin order. The analogous effect for D2 is also possible. The kinetic mechanisms of the homogeneous hydrogenation catalysts which permit the realization of the PASADENA effect have been the target of the experimental applications. The enhancement of the NMR transitions has facilitated the determination of true molecular rate constants. Ordinarily, the activity of a catalyst is assessed by dividing the observed rate by the total catalyst concentration. However, the question as to whether most of the catalytic rate is due to a tiny fraction of active species or a large fraction with a relatively low molecular rate is not clearly addressed by such an analysis. This ambiguity is entirely avoided in the PASADENA studies, since only active catalyst molecules can contribute to the enhanced signals from which all kinetic inferences are made. The sensitivity enhancement has also led to the identification of a novel intermediate in the mechanism for the Rh(DIPHOS)+ catalyzed hydrogenation of styrene. The rate of conversion of this species into product and starting material has been studied using two-dimensional NMR. The dramatically improved sensitivity should make it possible to observe key catalytic intermediates which do not build up in sufficient quantity to allow detection by conventional NMR arising from Curie-Law magnetization. The study of surface sites which bind pairwise with H2 is also a potentially fruitful area for future experimental work. The ambient temperature NMR spectroscopy of surfaces is not often feasible due to sensitivity limitations. Simulations have been performed using typical shift and coupling parameters in an effort to characterize the enhanced lineshapes which can be expected. The inverse of the PASADENA effect has also been proposed, whereby the spin order of a molecule containing hydrogen is probed by measuring the branching ratio to ortho and para dihydrogen. This RAYMOND phenomenon (radiowave application yields modulated ortho number desorbed) has the potential for measuring precursor NMR with extraordinary sensitivity, since it finesses the need for detection of radiowaves.

775 citations

Journal ArticleDOI
27 Mar 2009-Science
TL;DR: It is shown here that a metal complex can facilitate the reversible interaction of para-hydrogen with a suitable organic substrate such that up to an 800-fold increase in proton, carbon, and nitrogen signal strengths are seen for the substrate without its hydrogenation.
Abstract: The sensitivity of both nuclear magnetic resonance spectroscopy and magnetic resonance imaging is very low because the detected signal strength depends on the small population difference between spin states even in high magnetic fields. Hyperpolarization methods can be used to increase this difference and thereby enhance signal strength. This has been achieved previously by incorporating the molecular spin singlet para-hydrogen into hydrogenation reaction products. We show here that a metal complex can facilitate the reversible interaction of para-hydrogen with a suitable organic substrate such that up to an 800-fold increase in proton, carbon, and nitrogen signal strengths are seen for the substrate without its hydrogenation. These polarized signals can be selectively detected when combined with methods that suppress background signals.

737 citations

Journal ArticleDOI
TL;DR: Challenges for CEST Agents and Hyperpolarized Probes: Use of Gd Contrast Agents with HyperPolarized Substances 3038.
Abstract: 3.3. Magnetic Particle Imaging 3029 4. Challenges for CEST Agents 3029 4.1. Technical Issues 3029 4.2. Chemical Issues 3031 4.3. Biological Issues 3032 5. Challenges for Heteronuclear MR Imaging 3033 5.1. F-Based Probes 3033 6. Challenges for Hyperpolarized Probes 3034 6.1. Brute Force 3034 6.2. Optical Pumping and Spin Exchange 3035 6.3. Dynamic Nuclear Polarization (DNP) 3035 6.4. para-Hydrogen Induced Polarization (PHIP) 3037 6.5. Use of Gd Contrast Agents with Hyperpolarized Substances 3038

714 citations

Journal ArticleDOI
TL;DR: A method of obtaining very large nuclear-spin polarizations and a means of extending the resultant sensitivity enhancement to other spins is proposed in which the transfer of order occurs through population differences not associated with magnetization.
Abstract: A method of obtaining very large nuclear-spin polarizations is proposed and illustrated by density-operator calculations. The prediction is that chemical reaction and rf irradiation can convert the scalar parahydrogen state into polarization of order unity on the nuclear spins of the products of molecular-hydrogen addition reactions. A means of extending the resultant sensitivity enhancement to other spins is proposed in which the transfer of order occurs through population differences not associated with magnetization.

697 citations