scispace - formally typeset
Journal ArticleDOI

Optimum consumption and portfolio rules in a continuous-time model☆

01 Dec 1971-Journal of Economic Theory (Academic Press)-Vol. 3, Iss: 4, pp 373-413

TL;DR: In this paper, the authors considered the continuous-time consumption-portfolio problem for an individual whose income is generated by capital gains on investments in assets with prices assumed to satisfy the geometric Brownian motion hypothesis, which implies that asset prices are stationary and lognormally distributed.

AbstractPublisher Summary A common hypothesis about the behavior of limited liability asset prices in perfect markets is the random walk of returns or in its continuous-time form the geometric Brownian motion hypothesis, which implies that asset prices are stationary and log-normally distributed. A number of investigators of the behavior of stock and commodity prices have questioned the accuracy of the hypothesis. In an earlier study described in the chapter, it was examined that the continuous-time consumption-portfolio problem for an individual whose income is generated by capital gains on investments in assets with prices assumed to satisfy the “geometric Brownian motion” hypothesis. Under the additional assumption of a constant relative or constant absolute risk-aversion utility function, explicit solutions for the optimal consumption and portfolio rules were derived. The changes in these optimal rules with respect to shifts in various parameters such as expected return, interest rates, and risk were examined by the technique of comparative statics. This chapter presents an extension of these results for more general utility functions, price behavior assumptions, and income generated also from noncapital gains sources. If the geometric Brownian motion hypothesis is accepted, then a general separation or mutual fund theorem can be proved such that, in this model, the classical Tobin mean-variance rules hold without the objectionable assumptions of quadratic utility or of normality of distributions for prices. Hence, when asset prices are generated by a geometric Brownian motion, the two-asset case can be worked on without loss of generality.

...read more


Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors use an intertemporal general equilibrium asset pricing model to study the term structure of interest rates and find that anticipations, risk aversion, investment alternatives, and preferences about the timing of consumption all play a role in determining bond prices.
Abstract: This paper uses an intertemporal general equilibrium asset pricing model to study the term structure of interest rates. In this model, anticipations, risk aversion, investment alternatives, and preferences about the timing of consumption all play a role in determining bond prices. Many of the factors traditionally mentioned as influencing the term structure are thus included in a way which is fully consistent with maximizing behavior and rational expectations. The model leads to specific formulas for bond prices which are well suited for empirical testing. 1. INTRODUCTION THE TERM STRUCTURE of interest rates measures the relationship among the yields on default-free securities that differ only in their term to maturity. The determinants of this relationship have long been a topic of concern for economists. By offering a complete schedule of interest rates across time, the term structure embodies the market's anticipations of future events. An explanation of the term structure gives us a way to extract this information and to predict how changes in the underlying variables will affect the yield curve. In a world of certainty, equilibrium forward rates must coincide with future spot rates, but when uncertainty about future rates is introduced the analysis becomes much more complex. By and large, previous theories of the term structure have taken the certainty model as their starting point and have proceeded by examining stochastic generalizations of the certainty equilibrium relationships. The literature in the area is voluminous, and a comprehensive survey would warrant a paper in itself. It is common, however, to identify much of the previous work in the area as belonging to one of four strands of thought. First, there are various versions of the expectations hypothesis. These place predominant emphasis on the expected values of future spot rates or holdingperiod returns. In its simplest form, the expectations hypothesis postulates that bonds are priced so that the implied forward rates are equal to the expected spot rates. Generally, this approach is characterized by the following propositions: (a) the return on holding a long-term bond to maturity is equal to the expected return on repeated investment in a series of the short-term bonds, or (b) the expected rate of return over the next holding period is the same for bonds of all maturities. The liquidity preference hypothesis, advanced by Hicks [16], concurs with the importance of expected future spot rates, but places more weight on the effects of the risk preferences of market participants. It asserts that risk aversion will cause forward rates to be systematically greater than expected spot rates, usually

6,763 citations

Journal ArticleDOI
TL;DR: In this article, an intertemporal model for the capital market is deduced from portfolio selection behavior by an arbitrary number of investors who aot so as to maximize the expected utility of lifetime consumption and who can trade continuously in time.
Abstract: An intertemporal model for the capital market is deduced from the portfolio selection behavior by an arbitrary number of investors who aot so as to maximize the expected utility of lifetime consumption and who can trade continuously in time. Explicit demand functions for assets are derived, and it is shown that, unlike the one-period model, current demands are affected by the possibility of uncertain changes in future investment opportunities. After aggregating demands and requiring market clearing, the equilibrium relationships among expected returns are derived, and contrary to the classical capital asset pricing model, expected returns on risky assets may differ from the riskless rate even when they have no systematic or market risk. ONE OF THE MORE important developments in modern capital market theory is the Sharpe-Lintner-Mossin mean-variance equilibrium model of exchange, commonly called the capital asset pricing model.2 Although the model has been the basis for more than one hundred academic papers and has had significant impact on the non-academic financial community,' it is still subject to theoretical and empirical criticism. Because the model assumes that investors choose their portfolios according to the Markowitz [21] mean-variance criterion, it is subject to all the theoretical objections to this criterion, of which there are many.4 It has also been criticized for the additional assumptions required,5 especially homogeneous expectations and the single-period nature of the model. The proponents of the model who agree with the theoretical objections, but who argue that the capital market operates "as if" these assumptions were satisfied, are themselves not beyond criticism. While the model predicts that the expected excess return from holding an asset is proportional to the covariance of its return with the market

6,001 citations

Journal ArticleDOI
TL;DR: In this article, the authors derived a general form of the term structure of interest rates and showed that the expected rate of return on any bond in excess of the spot rate is proportional to its standard deviation.
Abstract: The paper derives a general form of the term structure of interest rates. The following assumptions are made: (A.1) The instantaneous (spot) interest rate follows a diffusion process; (A.2) the price of a discount bond depends only on the spot rate over its term; and (A.3) the market is efficient. Under these assumptions, it is shown by means of an arbitrage argument that the expected rate of return on any bond in excess of the spot rate is proportional to its standard deviation. This property is then used to derive a partial differential equation for bond prices. The solution to that equation is given in the form of a stochastic integral representation. An interpretation of the bond pricing formula is provided. The model is illustrated on a specific case.

5,916 citations

Journal ArticleDOI
TL;DR: In this article, an option pricing formula was derived for the more general case when the underlying stock returns are generated by a mixture of both continuous and jump processes, and the derived formula has most of the attractive features of the original Black-Scholes formula.
Abstract: The validity of the classic Black-Scholes option pricing formula depends on the capability of investors to follow a dynamic portfolio strategy in the stock that replicates the payoff structure to the option. The critical assumption required for such a strategy to be feasible, is that the underlying stock return dynamics can be described by a stochastic process with a continuous sample path. In this paper, an option pricing formula is derived for the more-general case when the underlying stock returns are generated by a mixture of both continuous and jump processes. The derived formula has most of the attractive features of the original Black-Scholes formula in that it does not depend on investor preferences or knowledge of the expected return on the underlying stock. Moreover, the same analysis applied to the options can be extended to the pricing of corporate liabilities.

5,497 citations


Cites background from "Optimum consumption and portfolio r..."

  • ...As discussed in Merton (1971). there is a theory of stochastic differential equations to describe the motions of continuous sample path stochastic processes....

    [...]

Book
01 Jan 1992
TL;DR: The "Dynamic Asset Pricing Theory" (DAT) as discussed by the authors is a textbook for doctoral students and researchers on the theory of asset pricing and portfolio selection in multi-period settings under uncertainty.
Abstract: "Dynamic Asset Pricing Theory" is a textbook for doctoral students and researchers on the theory of asset pricing and portfolio selection in multiperiod settings under uncertainty. The asset pricing results are based on the three increasingly restrictive assumptions: absence of arbitrage, single-agent optimaltiy, and equilibrium. These results are unified with two key concepts, state prices and martingales. Technicalities are given relatively little emphasis so as to draw connections between these concepts and to make plain the similarities between discrete and continuous-time models. For simplicity, all continuous-time models are based on Brownian motion. Applications include term structure models, derivative valuation and hedging methods, and dynamic programming algorithms for portfolio choice and optimal exercise of American options. Numerical methods covered include Monte Carlo simulation and finite-difference solvers for partial differential equations. Each chapter provides extensive problem exercises and notes to the literature. This second edition is substantially longer, while still retaining the consciseness for which the first edition was praised. All chapters from the first edition have been revised. Two new chapters have been added on term structure modeling and on derivative securities. References have been updated throughout. With this new edition, "Dynamic Asset Pricing Theory" remains the definitive textbook in the field.

2,820 citations


References
More filters
Journal ArticleDOI
TL;DR: In this paper, the combined problem of optimal portfolio selection and consumption rules for an individual in a continuous-time model was examined, where his income is generated by returns on assets and these returns or instantaneous "growth rates" are stochastic.
Abstract: OST models of portfolio selection have M been one-period models. I examine the combined problem of optimal portfolio selection and consumption rules for an individual in a continuous-time model whzere his income is generated by returns on assets and these returns or instantaneous "growth rates" are stochastic. P. A. Samuelson has developed a similar model in discrete-time for more general probability distributions in a companion paper [8]. I derive the optimality equations for a multiasset problem when the rate of returns are generated by a Wiener Brownian-motion process. A particular case examined in detail is the two-asset model with constant relative riskaversion or iso-elastic marginal utility. An explicit solution is also found for the case of constant absolute risk-aversion. The general technique employed can be used to examine a wide class of intertemporal economic problems under uncertainty. In addition to the Samuelson paper [8], there is the multi-period analysis of Tobin [9]. Phelps [6] has a model used to determine the optimal consumption rule for a multi-period example where income is partly generated by an asset with an uncertain return. Mirrless [5] has developed a continuous-time optimal consumption model of the neoclassical type with technical progress a random variable.

4,592 citations

Book
01 Jan 1965
TL;DR: This book should be of interest to undergraduate and postgraduate students of probability theory.
Abstract: This book should be of interest to undergraduate and postgraduate students of probability theory.

3,596 citations

Book ChapterDOI
TL;DR: In this paper, the optimal consumption-investment problem for an investor whose utility for consumption over time is a discounted sum of single-period utilities, with the latter being constant over time and exhibiting constant relative risk aversion (power-law functions or logarithmic functions), is discussed.
Abstract: Publisher Summary This chapter reviews the optimal consumption-investment problem for an investor whose utility for consumption over time is a discounted sum of single-period utilities, with the latter being constant over time and exhibiting constant relative risk aversion (power-law functions or logarithmic functions). It presents a generalization of Phelps' model to include portfolio choice and consumption. The explicit form of the optimal solution is derived for the special case of utility functions having constant relative risk aversion. The optimal portfolio decision is independent of time, wealth, and the consumption decision at each stage. Most analyses of portfolio selection, whether they are of the Markowitz–Tobin mean-variance or of more general type, maximize over one period. The chapter only discusses special and easy cases that suffice to illustrate the general principles involved and presents the lifetime model that reveals that investing for many periods does not itself introduce extra tolerance for riskiness at early or any stages of life.

2,305 citations

Book
17 Jan 2012
TL;DR: In this article, a book on stochastic stability and control dealing with Liapunov function approach to study of Markov processes is presented, which is based on the work of this article.
Abstract: Book on stochastic stability and control dealing with Liapunov function approach to study of Markov processes

1,253 citations