scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Optimum consumption and portfolio rules in a continuous-time model☆

01 Dec 1971-Journal of Economic Theory (Academic Press)-Vol. 3, Iss: 4, pp 373-413
TL;DR: In this paper, the authors considered the continuous-time consumption-portfolio problem for an individual whose income is generated by capital gains on investments in assets with prices assumed to satisfy the geometric Brownian motion hypothesis, which implies that asset prices are stationary and lognormally distributed.
About: This article is published in Journal of Economic Theory.The article was published on 1971-12-01 and is currently open access. It has received 4952 citations till now. The article focuses on the topics: Geometric Brownian motion & Intertemporal portfolio choice.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the static trade-off theory of corporate leverage is tested against the pecking order theory of Corporate leverage, using a broad cross-section of US firms over the period 1980-1998, and robust evidence of mean reversion in leverage is found.
Abstract: The pecking order theory of corporate leverage is tested against the static tradeoff theory of corporate leverage, using a broad cross-section of US firms over the period 1980-1998. A derivation of the conditional target adjustment framework is provided as a better empirical test of mean reversion. None of the predictions of the pecking order theory hold in the data. As predicted by the static tradeoff theory, robust evidence of mean reversion in leverage is found. This is true both unconditionally and conditionally on financial factors. Leverage is more persistent at lower levels than at higher levels. When debt matures, it is not replaced dollar for dollar by new debt and so leverage declines. Large firms increase their debt in order to support the payment of dividends. By contrast, small firms reduce their debt while they pay dividends.

2,222 citations

Journal ArticleDOI
TL;DR: In this paper, a continuous time general equilibrium model of a simple but complete economy is developed to examine the behavior of asset prices and their stochastic properties are determined endogenously, and the model is fully consistent with rational expectations and maximizing behavior on the part of all agents.
Abstract: This paper develops a continuous time general equilibrium model of a simple but complete economy and uses it to examine the behavior of asset prices. In this model, asset prices and their stochastic properties are determined endogenously. One principal result is a partial differential equation which asset prices must satisfy. The solution of this equation gives the equilibrium price of any asset in terms of the underlying real variables in the economy. IN THIS PAPER, we develop a general equilibrium asset pricing model for use in applied research. An important feature of the model is its integration of real and financial markets. Among other things, the model endogenously determines the stochastic process followed by the equilibrium price of any financial asset and shows how this process depends on the underlying real variables. The model is fully consistent with rational expectations and maximizing behavior on the part of all agents. Our framework is general enough to include many of the fundamental forces affecting asset markets, yet it is tractable enough to be specialized easily to produce specific testable results. Furthermore, the model can be extended in a number of straightforward ways. Consequently, it is well suited to a wide variety of applications. For example, in a companion paper, Cox, Ingersoll, and Ross [7], we use the model to develop a theory of the term structure of interest rates. Many studies have been concerned with various aspects of asset pricing under uncertainty. The most relevant to our work are the important papers on intertemporal asset pricing by Merton [19] and Lucas [16]. Working in a continuous time framework, Merton derives a relationship among the equilibrium expected rates of return on assets. He shows that when investment opportunities are changing randomly over time this relationship will include effects which have no analogue in a static one period model. Lucas considers an economy with homogeneous individuals and a single consumption good which is produced by a number of processes. The random output of these processes is exogenously determined and perishable. Assets are defined as claims to all or a part of the output of a process, and the equilibrium determines the asset prices. Our theory draws on some elements of both of these papers. Like Merton, we formulate our model in continuous time and make full use of the analytical tractability that this affords. The economic structure of our model is somewhat similar to that of Lucas. However, we include both endogenous production and

1,999 citations

Journal ArticleDOI
TL;DR: The authors construct continuous time stochastic volatility models for financial assets where the volatility processes are superpositions of positive Ornstein-Uhlenbeck (OU) processes, and study these models in relation to financial data and theory.
Abstract: Non-Gaussian processes of Ornstein–Uhlenbeck (OU) type offer the possibility of capturing important distributional deviations from Gaussianity and for flexible modelling of dependence structures. This paper develops this potential, drawing on and extending powerful results from probability theory for applications in statistical analysis. Their power is illustrated by a sustained application of OU processes within the context of finance and econometrics. We construct continuous time stochastic volatility models for financial assets where the volatility processes are superpositions of positive OU processes, and we study these models in relation to financial data and theory.

1,991 citations

Posted Content
TL;DR: The Arrow-Pratt theory of risk aversion was shown to be isomorphic to the theory of optimal choice under risk in this paper, making possible the application of a large body of knowledge about risk aversion to precautionary saving.
Abstract: The theory of precautionary saving is shown in this paper to be isomorphic to the Arrow-Pratt theory of risk aversion, making possible the application of a large body of knowledge about risk aversion to precautionary saving, and more generally, to the theory of optimal choice under risk In particular, a measure of the strength of precautionary saving motive analogous to the Arrow-Pratt measure of risk aversion is used to establish a number of new propositions about precautionary saving, and to give a new interpretation of the Oreze-Modigliani substitution effect

1,944 citations

Journal ArticleDOI
TL;DR: In this article, the authors identify the effect of social capital on financial development by exploiting social capital differences within Italy and find that households are more likely to use checks, invest less in cash and more in stock, have higher access to institutional credit, and make less use of informal credit.
Abstract: To identify the effect of social capital on financial development, we exploit social capital differences within Italy. In high-social-capital areas, households are more likely to use checks, invest less in cash and more in stock, have higher access to institutional credit, and make less use of informal credit. The effect of social capital is stronger where legal enforcement is weaker and among less educated people. These results are not driven by omitted environmental variables, since we show that the behavior of movers is still affected by the level of social capital of the province where they were born.

1,895 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the combined problem of optimal portfolio selection and consumption rules for an individual in a continuous-time model was examined, where his income is generated by returns on assets and these returns or instantaneous "growth rates" are stochastic.
Abstract: OST models of portfolio selection have M been one-period models. I examine the combined problem of optimal portfolio selection and consumption rules for an individual in a continuous-time model whzere his income is generated by returns on assets and these returns or instantaneous "growth rates" are stochastic. P. A. Samuelson has developed a similar model in discrete-time for more general probability distributions in a companion paper [8]. I derive the optimality equations for a multiasset problem when the rate of returns are generated by a Wiener Brownian-motion process. A particular case examined in detail is the two-asset model with constant relative riskaversion or iso-elastic marginal utility. An explicit solution is also found for the case of constant absolute risk-aversion. The general technique employed can be used to examine a wide class of intertemporal economic problems under uncertainty. In addition to the Samuelson paper [8], there is the multi-period analysis of Tobin [9]. Phelps [6] has a model used to determine the optimal consumption rule for a multi-period example where income is partly generated by an asset with an uncertain return. Mirrless [5] has developed a continuous-time optimal consumption model of the neoclassical type with technical progress a random variable.

4,908 citations

Book
01 Jan 1965
TL;DR: This book should be of interest to undergraduate and postgraduate students of probability theory.
Abstract: This book should be of interest to undergraduate and postgraduate students of probability theory.

3,597 citations

Book ChapterDOI
TL;DR: In this paper, the optimal consumption-investment problem for an investor whose utility for consumption over time is a discounted sum of single-period utilities, with the latter being constant over time and exhibiting constant relative risk aversion (power-law functions or logarithmic functions), is discussed.
Abstract: Publisher Summary This chapter reviews the optimal consumption-investment problem for an investor whose utility for consumption over time is a discounted sum of single-period utilities, with the latter being constant over time and exhibiting constant relative risk aversion (power-law functions or logarithmic functions). It presents a generalization of Phelps' model to include portfolio choice and consumption. The explicit form of the optimal solution is derived for the special case of utility functions having constant relative risk aversion. The optimal portfolio decision is independent of time, wealth, and the consumption decision at each stage. Most analyses of portfolio selection, whether they are of the Markowitz–Tobin mean-variance or of more general type, maximize over one period. The chapter only discusses special and easy cases that suffice to illustrate the general principles involved and presents the lifetime model that reveals that investing for many periods does not itself introduce extra tolerance for riskiness at early or any stages of life.

2,369 citations

Book
17 Jan 2012
TL;DR: In this article, a book on stochastic stability and control dealing with Liapunov function approach to study of Markov processes is presented, which is based on the work of this article.
Abstract: Book on stochastic stability and control dealing with Liapunov function approach to study of Markov processes

1,293 citations