scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Optimum consumption and portfolio rules in a continuous-time model☆

01 Dec 1971-Journal of Economic Theory (Academic Press)-Vol. 3, Iss: 4, pp 373-413
TL;DR: In this paper, the authors considered the continuous-time consumption-portfolio problem for an individual whose income is generated by capital gains on investments in assets with prices assumed to satisfy the geometric Brownian motion hypothesis, which implies that asset prices are stationary and lognormally distributed.
About: This article is published in Journal of Economic Theory.The article was published on 1971-12-01 and is currently open access. It has received 4952 citations till now. The article focuses on the topics: Geometric Brownian motion & Intertemporal portfolio choice.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors use an intertemporal general equilibrium asset pricing model to study the term structure of interest rates and find that anticipations, risk aversion, investment alternatives, and preferences about the timing of consumption all play a role in determining bond prices.
Abstract: This paper uses an intertemporal general equilibrium asset pricing model to study the term structure of interest rates. In this model, anticipations, risk aversion, investment alternatives, and preferences about the timing of consumption all play a role in determining bond prices. Many of the factors traditionally mentioned as influencing the term structure are thus included in a way which is fully consistent with maximizing behavior and rational expectations. The model leads to specific formulas for bond prices which are well suited for empirical testing. 1. INTRODUCTION THE TERM STRUCTURE of interest rates measures the relationship among the yields on default-free securities that differ only in their term to maturity. The determinants of this relationship have long been a topic of concern for economists. By offering a complete schedule of interest rates across time, the term structure embodies the market's anticipations of future events. An explanation of the term structure gives us a way to extract this information and to predict how changes in the underlying variables will affect the yield curve. In a world of certainty, equilibrium forward rates must coincide with future spot rates, but when uncertainty about future rates is introduced the analysis becomes much more complex. By and large, previous theories of the term structure have taken the certainty model as their starting point and have proceeded by examining stochastic generalizations of the certainty equilibrium relationships. The literature in the area is voluminous, and a comprehensive survey would warrant a paper in itself. It is common, however, to identify much of the previous work in the area as belonging to one of four strands of thought. First, there are various versions of the expectations hypothesis. These place predominant emphasis on the expected values of future spot rates or holdingperiod returns. In its simplest form, the expectations hypothesis postulates that bonds are priced so that the implied forward rates are equal to the expected spot rates. Generally, this approach is characterized by the following propositions: (a) the return on holding a long-term bond to maturity is equal to the expected return on repeated investment in a series of the short-term bonds, or (b) the expected rate of return over the next holding period is the same for bonds of all maturities. The liquidity preference hypothesis, advanced by Hicks [16], concurs with the importance of expected future spot rates, but places more weight on the effects of the risk preferences of market participants. It asserts that risk aversion will cause forward rates to be systematically greater than expected spot rates, usually

7,014 citations

Journal ArticleDOI
TL;DR: In this article, an intertemporal model for the capital market is deduced from portfolio selection behavior by an arbitrary number of investors who aot so as to maximize the expected utility of lifetime consumption and who can trade continuously in time.
Abstract: An intertemporal model for the capital market is deduced from the portfolio selection behavior by an arbitrary number of investors who aot so as to maximize the expected utility of lifetime consumption and who can trade continuously in time. Explicit demand functions for assets are derived, and it is shown that, unlike the one-period model, current demands are affected by the possibility of uncertain changes in future investment opportunities. After aggregating demands and requiring market clearing, the equilibrium relationships among expected returns are derived, and contrary to the classical capital asset pricing model, expected returns on risky assets may differ from the riskless rate even when they have no systematic or market risk. ONE OF THE MORE important developments in modern capital market theory is the Sharpe-Lintner-Mossin mean-variance equilibrium model of exchange, commonly called the capital asset pricing model.2 Although the model has been the basis for more than one hundred academic papers and has had significant impact on the non-academic financial community,' it is still subject to theoretical and empirical criticism. Because the model assumes that investors choose their portfolios according to the Markowitz [21] mean-variance criterion, it is subject to all the theoretical objections to this criterion, of which there are many.4 It has also been criticized for the additional assumptions required,5 especially homogeneous expectations and the single-period nature of the model. The proponents of the model who agree with the theoretical objections, but who argue that the capital market operates "as if" these assumptions were satisfied, are themselves not beyond criticism. While the model predicts that the expected excess return from holding an asset is proportional to the covariance of its return with the market

6,294 citations

Journal ArticleDOI
TL;DR: In this article, the authors derived a general form of the term structure of interest rates and showed that the expected rate of return on any bond in excess of the spot rate is proportional to its standard deviation.

6,160 citations

Journal ArticleDOI
TL;DR: In this article, an option pricing formula was derived for the more general case when the underlying stock returns are generated by a mixture of both continuous and jump processes, and the derived formula has most of the attractive features of the original Black-Scholes formula.

5,812 citations


Cites background from "Optimum consumption and portfolio r..."

  • ...As discussed in Merton (1971). there is a theory of stochastic differential equations to describe the motions of continuous sample path stochastic processes....

    [...]

Book
01 Jan 1992
TL;DR: The "Dynamic Asset Pricing Theory" (DAT) as discussed by the authors is a textbook for doctoral students and researchers on the theory of asset pricing and portfolio selection in multi-period settings under uncertainty.
Abstract: "Dynamic Asset Pricing Theory" is a textbook for doctoral students and researchers on the theory of asset pricing and portfolio selection in multiperiod settings under uncertainty. The asset pricing results are based on the three increasingly restrictive assumptions: absence of arbitrage, single-agent optimaltiy, and equilibrium. These results are unified with two key concepts, state prices and martingales. Technicalities are given relatively little emphasis so as to draw connections between these concepts and to make plain the similarities between discrete and continuous-time models. For simplicity, all continuous-time models are based on Brownian motion. Applications include term structure models, derivative valuation and hedging methods, and dynamic programming algorithms for portfolio choice and optimal exercise of American options. Numerical methods covered include Monte Carlo simulation and finite-difference solvers for partial differential equations. Each chapter provides extensive problem exercises and notes to the literature. This second edition is substantially longer, while still retaining the consciseness for which the first edition was praised. All chapters from the first edition have been revised. Two new chapters have been added on term structure modeling and on derivative securities. References have been updated throughout. With this new edition, "Dynamic Asset Pricing Theory" remains the definitive textbook in the field.

2,857 citations

References
More filters
Journal ArticleDOI

34 citations

Dissertation
01 Jan 1969

4 citations