scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Orally effective FDA-approved protein kinase targeted covalent inhibitors (TCIs)

01 Mar 2021-Pharmacological Research (Elsevier BV)-Vol. 165, pp 105422
TL;DR: Covalent inhibitors have emerged from the ranks of drugs to be avoided to become an emerging paradigm in the development of enzyme antagonists and receptor modulators as mentioned in this paper and have become one of the most important drug targets of the 21st century.
About: This article is published in Pharmacological Research.The article was published on 2021-03-01. It has received 33 citations till now. The article focuses on the topics: Ibrutinib & Bruton's tyrosine kinase.
Citations
More filters
Journal ArticleDOI
TL;DR: There are currently 62 FDA-approved therapeutic agents that target about two dozen different protein kinases and eight of these were approved in 2020 as discussed by the authors, with the exception of netarsudil (a ROCK 1/2 non-receptor protein-serine/threonine kinase antagonist given as an eye drop for the treatment of glaucoma) and temsirolimus (an indirect mTOR inhibitor given intravenously to treat renal cell carcinoma).

205 citations

Journal ArticleDOI
TL;DR: There are 68 FDA-approved therapeutic agents that target about two dozen different protein kinases and six of these drugs were approved in 2021 as discussed by the authors , including twelve target protein-serine/threonine protein kinase, four are directed against dual specificity MEK1/2, thirteen block nonreceptor protein-tyrosine protein-protein kinases, and 39 target receptor protein-synthesis kinases.
Abstract: Owing to the dysregulation of protein kinase activity in many diseases including cancer, this enzyme family has become one of the most important drug targets in the 21st century. There are 68 FDA-approved therapeutic agents that target about two dozen different protein kinases and six of these drugs were approved in 2021. Of the approved drugs, twelve target protein-serine/threonine protein kinases, four are directed against dual specificity protein kinases (MEK1/2), thirteen block nonreceptor protein-tyrosine kinases, and 39 target receptor protein-tyrosine kinases. The data indicate that 58 of these drugs are prescribed for the treatment of neoplasms (49 against solid tumors including breast, lung, and colon, five against nonsolid tumors such as leukemias, and four against both solid and nonsolid tumors: acalabrutinib, ibrutinib, imatinib, and midostaurin). Three drugs (baricitinib, tofacitinib, upadacitinib) are used for the treatment of inflammatory diseases including rheumatoid arthritis. Of the 68 approved drugs, eighteen are used in the treatment of multiple diseases. The following six drugs received FDA approval in 2021 for the treatment of these specified diseases: belumosudil (graft vs. host disease), infigratinib (cholangiocarcinomas), mobocertinib and tepotinib (specific forms of non-small cell lung cancer), tivozanib (renal cell carcinoma), and trilaciclib (to decrease chemotherapy-induced myelosuppression). All of the FDA-approved drugs are orally effective with the exception of netarsudil, temsirolimus, and the newly approved trilaciclib. This review summarizes the physicochemical properties of all 68 FDA-approved small molecule protein kinase inhibitors including lipophilic efficiency and ligand efficiency.

98 citations

Journal ArticleDOI
TL;DR: The physicochemical properties of all 72 FDA-approved small molecule protein kinase inhibitors including lipophilic efficiency and ligand efficiency are summarized in this article , with the exception of netarsudil, temsirolimus, and trilaciclib.
Abstract: Owing to the dysregulation of protein kinase activity in many diseases including cancer, this enzyme family has become one of the most important drug targets in the 21st century. There are 72 FDA-approved therapeutic agents that target about two dozen different protein kinases and three of these drugs were approved in 2022. Of the approved drugs, twelve target protein-serine/threonine protein kinases, four are directed against dual specificity protein kinases (MEK1/2), sixteen block nonreceptor protein-tyrosine kinases, and 40 target receptor protein-tyrosine kinases. The data indicate that 62 of these drugs are prescribed for the treatment of neoplasms (57 against solid tumors including breast, lung, and colon, ten against nonsolid tumors such as leukemia, and four against both solid and nonsolid tumors: acalabrutinib, ibrutinib, imatinib, and midostaurin). Four drugs (abrocitinib, baricitinib, tofacitinib, upadacitinib) are used for the treatment of inflammatory diseases (atopic dermatitis, psoriatic arthritis, rheumatoid arthritis, Crohn disease, and ulcerative colitis). Of the 72 approved drugs, eighteen are used in the treatment of multiple diseases. The following three drugs received FDA approval in 2022 for the treatment of these specified diseases: abrocitinib (atopic dermatitis), futibatinib (cholangiocarcinomas), pacritinib (myelofibrosis). All of the FDA-approved drugs are orally effective with the exception of netarsudil, temsirolimus, and trilaciclib. This review summarizes the physicochemical properties of all 72 FDA-approved small molecule protein kinase inhibitors including lipophilic efficiency and ligand efficiency.

33 citations

Journal ArticleDOI
TL;DR: The five FDA-approved PI 3-kinase inhibitors produce significant on-target toxicities, more so than many approved protein kinase antagonists.

30 citations

Journal ArticleDOI
TL;DR: The Janus kinase (JAK) family of nonreceptor protein-tyrosine kinases consists of JAK1, JAK2,JAK3, and TYK2 (Tyrosine Kinase 2).
Abstract: The Janus kinase (JAK) family of nonreceptor protein-tyrosine kinases consists of JAK1, JAK2, JAK3, and TYK2 (Tyrosine Kinase 2). Each of these proteins contains a JAK homology pseudokinase (JH2) domain that interacts with and regulates the activity of the adjacent protein kinase domain (JH1). The Janus kinase family is regulated by numerous cytokines including interferons, interleukins, and hormones such as erythropoietin and thrombopoietin. Ligand binding to cytokine receptors leads to the activation of associated Janus kinases, which then catalyze the phosphorylation of the receptors. The SH2 domain of signal transducers and activators of transcription (STAT) binds to the cytokine receptor phosphotyrosines thereby promoting STAT phosphorylation and activation by the Janus kinases. STAT dimers are then translocated into the nucleus where they participate in the regulation and expression of dozens of proteins. JAK1/3 signaling participates in the pathogenesis of inflammatory disorders while JAK1/2 signaling contributes to the development of myeloproliferative neoplasms as well as several malignancies including leukemias and lymphomas. An activating JAK2 V617F mutation occurs in 95% of people with polycythemia vera and about 50% of cases of myelofibrosis and essential thrombocythemia. Abrocitinib, ruxolitinib, and upadacitinib are JAK inhibitors that are FDA-approved for the treatment of atopic dermatitis. Baricitinib is used for the treatment of rheumatoid arthritis and covid 19. Tofacitinib and upadacitinib are JAK antagonists that are used for the treatment of rheumatoid arthritis and ulcerative colitis. Additionally, ruxolitinib is approved for the treatment of polycythemia vera while fedratinib, pacritinib, and ruxolitinib are approved for the treatment of myelofibrosis.

17 citations

References
More filters
Journal ArticleDOI
TL;DR: A status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions.
Abstract: This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions There will be an estimated 181 million new cancer cases (170 million excluding nonmelanoma skin cancer) and 96 million cancer deaths (95 million excluding nonmelanoma skin cancer) in 2018 In both sexes combined, lung cancer is the most commonly diagnosed cancer (116% of the total cases) and the leading cause of cancer death (184% of the total cancer deaths), closely followed by female breast cancer (116%), prostate cancer (71%), and colorectal cancer (61%) for incidence and colorectal cancer (92%), stomach cancer (82%), and liver cancer (82%) for mortality Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality) Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts CA: A Cancer Journal for Clinicians 2018;0:1-31 © 2018 American Cancer Society

58,675 citations

Journal ArticleDOI
06 Dec 2002-Science
TL;DR: The protein kinase complement of the human genome is catalogued using public and proprietary genomic, complementary DNA, and expressed sequence tag sequences to provide a starting point for comprehensive analysis of protein phosphorylation in normal and disease states and a detailed view of the current state of human genome analysis through a focus on one large gene family.
Abstract: We have catalogued the protein kinase complement of the human genome (the "kinome") using public and proprietary genomic, complementary DNA, and expressed sequence tag (EST) sequences. This provides a starting point for comprehensive analysis of protein phosphorylation in normal and disease states, as well as a detailed view of the current state of human genome analysis through a focus on one large gene family. We identify 518 putative protein kinase genes, of which 71 have not previously been reported or described as kinases, and we extend or correct the protein sequences of 56 more kinases. New genes include members of well-studied families as well as previously unidentified families, some of which are conserved in model organisms. Classification and comparison with model organism kinomes identified orthologous groups and highlighted expansions specific to human and other lineages. We also identified 106 protein kinase pseudogenes. Chromosomal mapping revealed several small clusters of kinase genes and revealed that 244 kinases map to disease loci or cancer amplicons.

7,486 citations

Journal ArticleDOI
13 Oct 2000-Cell
TL;DR: Understanding of the complex signaling networks downstream from RTKs and how alterations in these networks are translated into cellular responses provides an important context for therapeutically countering the effects of pathogenic RTK mutations in cancer and other diseases.

7,056 citations

Journal ArticleDOI
TL;DR: Progress against CRC can be accelerated by increasing access to guideline‐recommended screening and high‐quality treatment, particularly among Alaska Natives, and elucidating causes for rising incidence in young and middle‐aged adults.
Abstract: Colorectal cancer (CRC) is the second most common cause of cancer death in the United States. Every 3 years, the American Cancer Society provides an update of CRC occurrence based on incidence data (available through 2016) from population-based cancer registries and mortality data (through 2017) from the National Center for Health Statistics. In 2020, approximately 147,950 individuals will be diagnosed with CRC and 53,200 will die from the disease, including 17,930 cases and 3,640 deaths in individuals aged younger than 50 years. The incidence rate during 2012 through 2016 ranged from 30 (per 100,000 persons) in Asian/Pacific Islanders to 45.7 in blacks and 89 in Alaska Natives. Rapid declines in incidence among screening-aged individuals during the 2000s continued during 2011 through 2016 in those aged 65 years and older (by 3.3% annually) but reversed in those aged 50 to 64 years, among whom rates increased by 1% annually. Among individuals aged younger than 50 years, the incidence rate increased by approximately 2% annually for tumors in the proximal and distal colon, as well as the rectum, driven by trends in non-Hispanic whites. CRC death rates during 2008 through 2017 declined by 3% annually in individuals aged 65 years and older and by 0.6% annually in individuals aged 50 to 64 years while increasing by 1.3% annually in those aged younger than 50 years. Mortality declines among individuals aged 50 years and older were steepest among blacks, who also had the only decreasing trend among those aged younger than 50 years, and excluded American Indians/Alaska Natives, among whom rates remained stable. Progress against CRC can be accelerated by increasing access to guideline-recommended screening and high-quality treatment, particularly among Alaska Natives, and elucidating causes for rising incidence in young and middle-aged adults.

2,928 citations

Journal ArticleDOI
31 May 1984-Nature
TL;DR: The complete 1,210-amino acid sequence of the human epidermal growth factor (EGF) receptor precursor, deduced from cDNA clones derived from placental and A431 carcinoma cells, reveals close similarity between the entire predicted ν-erb-B mRNA oncogene product and the receptor transmembrane and cytoplasmic domains.
Abstract: The complete 1,210-amino acid sequence of the human epidermal growth factor (EGF) receptor precursor, deduced from cDNA clones derived from placental and A431 carcinoma cells, reveals close similarity between the entire predicted v-erb-B mRNA oncogene product and the receptor transmembrane and cytoplasmic domains. A single transmembrane region of 23 amino acids separates the extracellular EGF binding and cytoplasmic domains. The receptor gene is amplified and apparently rearranged in A431 cells, generating a truncated 2.8-kilobase mRNA which encodes only the extracellular EGF binding domain.

2,657 citations