Orange peel activated carbon produced from waste orange peels for adsorption of methyl red
TL;DR: In this paper , the authors describe the development and testing of activated carbon made from orange peels, which is effective at removing methyl red (MR) from aqueous solutions, and thus provides a solution to this problem.
Abstract:
The existence of pollutants in the water is a very significant environmental problem that needs to be addressed. This work describes the development and testing of activated carbon made from orange peels, which is effective at removing methyl red (MR) from aqueous solutions, and thus provides a solution to this problem. Adsorbents made in the lab can be characterized by their bulk density, particle size, surface area, and proximate analysis. The surface area of the prepared adsorbent was 512.2 m2g−1. Standard procedures such as XRD, SEM, and FTIR analysis are also used to characterize prepared orange peel-activated carbon. Adsorbent dosage (0.25 to 1.25 g/L), MR concentration (100 to 400 mg/L), temperature (40 to 60 °C), contact time (10 to 60 minutes), and pH (3 to 11) were all examined in this experiment. At an amount of adsorbent of 1 g/L adsorbent, MR concentration of 100 mg/L, and a pH of 11, maximum adsorption has been observed. In order to analyze the results, adsorption models such as the Langmuir and Freundlich were applied. At 60 °C, the adsorption isotherm was found to fit the Langmuir model with 111.11 mg/g. The linear regression correlation coefficient, the R2 value is 0.999. Analytical results showed that MR could be effectively removed by using AC made from waste orange peels as an adsorbent.
Citations
More filters
TL;DR: In this article , the authors used activated carbon from agricultural waste to adsorb and remove chlorpyrifos from aqueous solutions, as well as to study the physicochemical characteristics of the prepared activated carbon.
Abstract: Chlorpyrifos is an organophosphate insecticide linked to neurological dysfunctions, endocrine disturbance, cardiovascular illness, genotoxicity, histopathological abnormalities, immunotoxicity, and oxidative stress. Therefore, the aim of this study was to prepare activated carbon from agricultural waste to adsorb and remove chlorpyrifos from aqueous solutions, as well as to study the physicochemical characteristics of the prepared activated carbon.Activated carbon was prepared from agricultural waste (banana peels, orange peels, pomegranate peels and date stones). The activated carbon prepared showed an exterior surface that was irregular and full of cavities with Brunauer-Emmett-Teller(BET) surface areas of 94.26, 111.75, 183.89, and 289.86 m2/g for activated carbon prepared from orange peels, date stone, pomegranate peels, and banana peels respectively. The Scanning Electron Microscope (SEM) image revealed that the activated carbon's exterior surface was irregular and full of various shapes and sizes of cavities.The Energy Dispersive X-Ray (EDX) indicated the existence of carbon, oxygen, silicon and potassium in banana peels-derived activated carbon, whereas carbon, oxygen, silicon and potassium, in addition to aluminium, were detected in the pomegranate peels-derived activated carbon. The Fourier-Transform Infrared Spectroscopy (FTIR) analysis of prepared activated carbon revealed several functional groups, including carboxylic acid, carbon dioxide, and aromatic compounds. Results also showed that the activated carbon significantly removed chlorpyrifos from water, recording 97.6%, 90.6%, 71.48%, and 52.00 % for activated carbon prepared from pomegranate peels, banana peels, date stones and orange peels, respectively. The study concluded that agricultural waste-derived activated carbon could be employed as an alternative pesticide adsorbent.
8 citations
References
More filters
TL;DR: Two simplified kinetic models including pseudo-first-order and pseudo-second-order equation were selected to follow the adsorption processes of methylene blue and the kinetic parameters of this best-fit model were calculated and discussed.
Abstract: Bamboo, an abundant and inexpensive natural resource in Malaysia was used to prepare activated carbon by physiochemical activation with potassium hydroxide (KOH) and carbon dioxide (CO(2)) as the activating agents at 850 degrees C for 2h. The adsorption equilibrium and kinetics of methylene blue dye on such carbon were then examined at 30 degrees C. Adsorption isotherm of the methylene blue (MB) on the activated carbon was determined and correlated with common isotherm equations. The equilibrium data for methylene blue adsorption well fitted to the Langmuir equation, with maximum monolayer adsorption capacity of 454.2mg/g. Two simplified kinetic models including pseudo-first-order and pseudo-second-order equation were selected to follow the adsorption processes. The adsorption of methylene blue could be best described by the pseudo-second-order equation. The kinetic parameters of this best-fit model were calculated and discussed.
1,315 citations
TL;DR: The conversion of waste products into effective adsorbents and their application for water treatment and the possible mechanism of adsorption on these adsorbent has been included in this article.
Abstract: Water pollution due to organic contaminants is a serious issue because of acute toxicities and carcinogenic nature of the pollutants. Among various water treatment methods, adsorption is supposed as the best one due to its inexpensiveness, universal nature and ease of operation. Many waste materials used include fruit wastes, coconut shell, scrap tyres, bark and other tannin-rich materials, sawdust and other wood type materials, rice husk, petroleum wastes, fertilizer wastes, fly ash, sugar industry wastes blast furnace slag, chitosan and seafood processing wastes, seaweed and algae, peat moss, clays, red mud, zeolites, sediment and soil, ore minerals etc. These adsorbents have been found to remove various organic pollutants ranging from 80 to 99.9%. The present article describes the conversion of waste products into effective adsorbents and their application for water treatment. The possible mechanism of adsorption on these adsorbents has also been included in this article. Besides, attempts have been made to discuss the future perspectives of low cost adsorbents in water treatment.
1,080 citations
TL;DR: The results showed that the adsorption of direct blue dye was maximal at pH 2, as the amount of adsorbent increased, the percentage of dye removal increased accordingly but it decreased with the increase in initial dye concentration and solution temperature.
Abstract: The use of cheap, high efficiency and ecofriendly adsorbent has been studied as an alternative source of activated carbon for the removal of dyes from wastewater. This study investigates the use of activated carbons prepared from pomegranate peel for the removal of direct blue dye from aqueous solution. A series of experiments were conducted in a batch system to assess the effect of the system variables, i.e. initial pH, temperature, initial dye concentration adsorbent dosage and contact time. The results showed that the adsorption of direct blue dye was maximal at pH 2, as the amount of adsorbent increased, the percentage of dye removal increased accordingly but it decreased with the increase in initial dye concentration and solution temperature. The adsorption kinetics was found to follow pseudo-second-order rate kinetic model, with a good correlation (R(2)>0.99) and intra-particle diffusion as one of the rate determining steps. Langmuir, Freundlich, Temkin, Dubinin-RadushKevich (D-R) and Harkins-Jura isotherms were used to analyze the equilibrium data at different temperatures. In addition, various thermodynamic parameters, such as standard Gibbs free energy (DeltaG degrees ), standard enthalpy (DeltaH degrees ), standard entropy (DeltaS degrees ), and the activation energy (E(a)) have been calculated. The adsorption process of direct blue dye onto different activated carbons prepared from pomegranate peel was found to be spontaneous and exothermic process. The findings of this investigation suggest that the physical sorption plays a role in controlling the sorption rate.
482 citations
TL;DR: In this article, the adsorption capacity (Q 0 ) calculated from Langmuir isotherm was 62.5 mg Ni(II) g −1 at initial pH of 5.0 at 30°C for the particle size 250-500 μm.
Abstract: Activated carbon has been prepared from coirpith by chemical activation and characterized. Carbonised coirpith is able to adsorb Ni(II) from aqueous solution. It was noted that a decreasing in the carbon concentration with constant Ni concentration, or an increase in the Ni concentration with constant carbon concentration resulted in a higher nickel uptake per unit weight of carbon. The Langmuir and Freundlich models for dynamics of metal ion uptake proposed in this work fit the experimental data reasonably well. The adsorption capacity (Q 0 ) calculated from Langmuir isotherm was 62.5 mg Ni(II) g −1 at initial pH of 5.0 at 30°C for the particle size 250–500 μm . The adsorption of Ni increased with pH from 2 to 7 and remained constant upto 10. The recovery of Ni(II) after adsorption can be carried out by treatment of the Ni loaded carbon with HCl. Desorption studies confirms adsorption is ion exchange. As coirpith is discarded as waste material from coir processing industries, the carbon is expected to be economical product for metal ion remediation from water and wastewater.
417 citations
TL;DR: In this paper, an extensive list of sorbent literature has been compiled, and a review evaluates different agricultural waste materials as low-cost adsorbents for the removal of dyes from wastewater.
Abstract: Color removal from wastewater has been a matter of concern, both in the aesthetic sense and health point of view. Color removal from textile effluents on a continuous industrial scale has been given much attention in the last few years, not only because of its potential toxicity, but also mainly due to its visibility problem. There have been various promising techniques for the removal of dyes from wastewater. However, the effectiveness of adsorption for dye removal from wastewater has made it an ideal alternative to other expensive treatment methods. In this review, an extensive list of sorbent literature has been compiled. The review evaluates different agricultural waste materials as low-cost adsorbents for the removal of dyes from wastewater. The review also outlines some of the fundamental principles of dye adsorption on to adsorbents.
389 citations