scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Orbital angular momentum beam excitation using an all-fiber weakly fused mode selective coupler

01 Nov 2017-Optics Letters (Optical Society of America)-Vol. 42, Iss: 21, pp 4347-4350
TL;DR: Experimental results showing the excited OAM mode purity of up to 75% measured through the standard ring technique not only demonstrate the proof of concept but also provide a baseline for further improvement.
Abstract: Orbital angular momentum beam excitation through direct phase-matched coupling is experimentally demonstrated using an all-fiber weakly fused mode selective coupler consisting of a single-mode fiber and a ring-core fiber. Experimental results showing the excited OAM mode purity of up to 75% measured through the standard ring technique not only demonstrate the proof of concept but also provide a baseline for further improvement.
Citations
More filters
Journal ArticleDOI
20 Mar 2020
TL;DR: In this paper, a low-cross-talk, wide-optical-bandwidth, polarization-insensitive, compact, and robust OAM mode sorter is proposed to realize the desired bidirectional conversion between seven co-axial OAM modes carried by a ring-core fiber and seven linearly displaced Gaussian-like modes in parallel single-mode fiber channels.
Abstract: With the amplitude, time, wavelength/frequency, phase, and polarization/spin parameter dimensions of the light wave/photon almost fully utilized in both classical and quantum photonic information systems, orbital angular momentum (OAM) carried by optical vortex modes is regarded as a new modal parameter dimension for further boosting the capacity and performance of the systems. To exploit the OAM mode space for such systems, stringent performance requirements on a pair of OAM mode multiplexer and demultiplexer (also known as mode sorters) must be met. In this work, we implement a newly discovered optical spiral transformation to achieve a low-cross-talk, wide-optical-bandwidth, polarization-insensitive, compact, and robust OAM mode sorter that realizes the desired bidirectional conversion between seven co-axial OAM modes carried by a ring-core fiber and seven linearly displaced Gaussian-like modes in parallel single-mode fiber channels. We further apply the device to successfully demonstrate high-spectral-efficiency and high-capacity data transmission in a 50-km OAM fiber communication link for the first time, in which a multi-dimensional multiplexing scheme multiplexes eight orbital-spin vortex mode channels with each mode channel simultaneously carrying 10 wavelength-division multiplexing channels, demonstrating the promising potential of both the OAM mode sorter and the multi-dimensional multiplexed OAM fiber systems enabled by the device. Our results pave the way for future OAM-based multi-dimensional communication systems.

74 citations

Journal ArticleDOI
TL;DR: In this article, a tutorial-cum-review-type article is presented to explain the relation between scalar fields and Stokes fields and the singularities in each of them, where the authors demonstrate this by theoretically and experimentally generating polarization singularities using phase singularities.
Abstract: Polarization singularities are superpositions of orbital angular momentum (OAM) states in orthogonal circular polarization basis. The intrinsic OAM of light beams arises due to the helical wavefronts of phase singularities. In phase singularities, circulating phase gradients and, in polarization singularities, circulating Stokes phase gradients are present. At the phase and polarization singularities, undefined quantities are the phase and Stokes phase, respectively. Conversion of circulating phase gradient into circulating Stokes phase gradient reveals the connection between phase (scalar) and polarization (vector) singularities. We demonstrate this by theoretically and experimentally generating polarization singularities using phase singularities. Furthermore, the relation between scalar fields and Stokes fields and the singularities in each of them is discussed. This paper is written as a tutorial-cum-review-type article keeping in mind the beginners and researchers in other areas, yet many of the concepts are given novel explanations by adopting different approaches from the available literature on this subject.

56 citations


Cites background from "Orbital angular momentum beam excit..."

  • ...Vortex generation in high power laser is possible with the use of fused silica fibers [280]....

    [...]

Journal ArticleDOI
TL;DR: The proposed method opens a new way to efficiently generate an all-fiber higher-order OAM using a conventional multimode fiber, which is realized based on utilization of a second-order helical fiber grating written in a few-mode fiber.
Abstract: An all-fiber orbital angular momentum (OAM) generator enabling direct turning of the fundamental mode (${{\rm HE}_{11}}$HE11) to the second OAM modes (${ l} = {\pm 2}$l=±2) with an efficiency of $\sim90\% $∼90% has been proposed and experimentally demonstrated, which is realized based on utilization of a second-order helical fiber grating written in a few-mode fiber. This is the first time, to the best of our knowledge, that an all-fiber second-order OAM has been achieved with using only one component, i.e., the helical long-period fiber grating. The proposed method opens a new way to efficiently generate an all-fiber higher-order OAM using a conventional multimode fiber.

42 citations

Journal ArticleDOI
TL;DR: A comprehensive review of recent research on the key aspects of RCF-based MDM transmission is presented, including a theoretical comparison between RCFs and conventional step-index and graded-index multi-mode fibers in terms of their MDM capacity and the associated MIMO complexity.
Abstract: The unique modal characteristics of ring core fibers (RCFs) potentially enable the implementation of mode-division multiplexing (MDM) schemes that can increase optical data transmission capacity with either low-complexity modular multi-input multi-output (MIMO) equalization or no MIMO equalization. This paper attempts to present a comprehensive review of recent research on the key aspects of RCF-based MDM transmission. Starting from fundamental fiber modal structures, a theoretical comparison between RCFs and conventional step-index and graded-index multi-mode fibers in terms of their MDM capacity and the associated MIMO complexity is given first as the underlining rationale behind RCF-MDM. This is followed by a discussion of RCF design considerations for achieving high-mode channel count and low crosstalk performances in either MIMO-free or modular MIMO transmission schemes. The principles and implementations of RCF mode (de-)multiplexing devices are discussed in detail, followed by RCF-based optical amplifiers culminating in MIMO-free or modular-MIMO RCF-MDM data transmission schemes. A discussion on further research directions is also given.

40 citations


Cites background from "Orbital angular momentum beam excit..."

  • ...8(b) [72], in which selectively coupling between different modes in the RCF and the SMF mode is realized through phase matching between the modes....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the basic concepts of fiber modes and the generation and detection theories of OAM modes are introduced, including the long-period fiber grating, the mode-selective coupler, microstructural optical fiber, and the photonic lantern.
Abstract: Orbital angular momentum (OAM) beams, characterized by the helical phase wavefront, have received significant interest in various areas of study. There are many methods to generate OAM beams, which can be roughly divided into two types: spatial methods and fiber methods. As a natural shaper of OAM beams, the fibers exhibit unique merits, namely, miniaturization and a low insertion loss. In this paper, we review the recent advances in fiber OAM mode generation systems, in both the interior and exterior of the beams. We introduce the basic concepts of fiber modes and the generation and detection theories of OAM modes. In addition, fiber systems based on different nuclear devices are introduced, including the long-period fiber grating, the mode-selective coupler, microstructural optical fiber, and the photonic lantern. Finally, the key challenges and prospects for fiber OAM mode systems are discussed.

36 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate the ability to multiplex and transfer data between twisted beams of light with different amounts of orbital angular momentum, which provides new opportunities for increasing the data capacity of free-space optical communications links.
Abstract: Researchers demonstrate the ability to multiplex and transfer data between twisted beams of light with different amounts of orbital angular momentum — a development that provides new opportunities for increasing the data capacity of free-space optical communications links.

3,556 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that if every polarization vector rotates, the light has spin; if the phase structure rotates and if a light has orbital angular momentum (OAM), the light can be many times greater than the spin.
Abstract: As they travel through space, some light beams rotate. Such light beams have angular momentum. There are two particularly important ways in which a light beam can rotate: if every polarization vector rotates, the light has spin; if the phase structure rotates, the light has orbital angular momentum (OAM), which can be many times greater than the spin. Only in the past 20 years has it been realized that beams carrying OAM, which have an optical vortex along the axis, can be easily made in the laboratory. These light beams are able to spin microscopic objects, give rise to rotational frequency shifts, create new forms of imaging systems, and behave within nonlinear material to give new insights into quantum optics.

2,508 citations

Journal ArticleDOI
28 Jun 2013-Science
TL;DR: The viability of using the orbital angular momentum (OAM) of light to create orthogonal, spatially distinct streams of data-transmitting channels that are multiplexed in a single fiber is demonstrated and suggest that OAM could provide an additional degree of freedom for data multiplexing in future fiber networks.
Abstract: Internet data traffic capacity is rapidly reaching limits imposed by optical fiber nonlinear effects Having almost exhausted available degrees of freedom to orthogonally multiplex data, the possibility is now being explored of using spatial modes of fibers to enhance data capacity We demonstrate the viability of using the orbital angular momentum (OAM) of light to create orthogonal, spatially distinct streams of data-transmitting channels that are multiplexed in a single fiber Over 11 kilometers of a specially designed optical fiber that minimizes mode coupling, we achieved 400-gigabits-per-second data transmission using four angular momentum modes at a single wavelength, and 16 terabits per second using two OAM modes over 10 wavelengths These demonstrations suggest that OAM could provide an additional degree of freedom for data multiplexing in future fiber networks

2,343 citations

Journal ArticleDOI
TL;DR: An optical process in which the spin angular momentum carried by a circularly polarized light beam is converted into orbital angular momentum, leading to the generation of helical modes with a wave-front helicity controlled by the input polarization is demonstrated.
Abstract: We demonstrate experimentally an optical process in which the spin angular momentum carried by a circularly polarized light beam is converted into orbital angular momentum, leading to the generation of helical modes with a wave-front helicity controlled by the input polarization. This phenomenon requires the interaction of light with matter that is both optically inhomogeneous and anisotropic. The underlying physics is also associated with the so-called Pancharatnam-Berry geometrical phases involved in any inhomogeneous transformation of the optical polarization.

1,725 citations

Journal ArticleDOI
TL;DR: In this paper, a spiral phaseplate can convert a TEM00 laser beam into a helical wavefront beam with a phase singularity at its axis, and the diffractive-optical effect of the spiral phase plate is implemented by index matching a macroscopic structure in an optical immersion.

1,393 citations