scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Orbital Physics in Transition-Metal Oxides

21 Apr 2000-Science (American Association for the Advancement of Science)-Vol. 288, Iss: 5465, pp 462-468
TL;DR: An overview is given here on this "orbital physics," which will be a key concept for the science and technology of correlated electrons.
Abstract: An electron in a solid, that is, bound to or nearly localized on the specific atomic site, has three attributes: charge, spin, and orbital. The orbital represents the shape of the electron cloud in solid. In transition-metal oxides with anisotropic-shaped d-orbital electrons, the Coulomb interaction between the electrons (strong electron correlation effect) is of importance for understanding their metal-insulator transitions and properties such as high-temperature superconductivity and colossal magnetoresistance. The orbital degree of freedom occasionally plays an important role in these phenomena, and its correlation and/or order-disorder transition causes a variety of phenomena through strong coupling with charge, spin, and lattice dynamics. An overview is given here on this "orbital physics," which will be a key concept for the science and technology of correlated electrons.
Citations
More filters
Journal ArticleDOI
10 Mar 2010-Nature
TL;DR: This exotic behaviour of frustrated magnets is now being uncovered in the laboratory, providing insight into the properties of spin liquids and challenges to the theoretical description of these materials.
Abstract: Frustrated magnets are materials in which localized magnetic moments, or spins, interact through competing exchange interactions that cannot be simultaneously satisfied, giving rise to a large degeneracy of the system ground state. Under certain conditions, this can lead to the formation of fluid-like states of matter, so-called spin liquids, in which the constituent spins are highly correlated but still fluctuate strongly down to a temperature of absolute zero. The fluctuations of the spins in a spin liquid can be classical or quantum and show remarkable collective phenomena such as emergent gauge fields and fractional particle excitations. This exotic behaviour is now being uncovered in the laboratory, providing insight into the properties of spin liquids and challenges to the theoretical description of these materials.

3,081 citations


Additional excerpts

  • ...This is common in transition-metal-containing compound...

    [...]

Journal ArticleDOI
TL;DR: A review of the most recent ARPES results on the cuprate superconductors and their insulating parent and sister compounds is presented in this article, with the purpose of providing an updated summary of the extensive literature.
Abstract: The last decade witnessed significant progress in angle-resolved photoemission spectroscopy (ARPES) and its applications. Today, ARPES experiments with 2-meV energy resolution and $0.2\ifmmode^\circ\else\textdegree\fi{}$ angular resolution are a reality even for photoemission on solids. These technological advances and the improved sample quality have enabled ARPES to emerge as a leading tool in the investigation of the high-${T}_{c}$ superconductors. This paper reviews the most recent ARPES results on the cuprate superconductors and their insulating parent and sister compounds, with the purpose of providing an updated summary of the extensive literature. The low-energy excitations are discussed with emphasis on some of the most relevant issues, such as the Fermi surface and remnant Fermi surface, the superconducting gap, the pseudogap and $d$-wave-like dispersion, evidence of electronic inhomogeneity and nanoscale phase separation, the emergence of coherent quasiparticles through the superconducting transition, and many-body effects in the one-particle spectral function due to the interaction of the charge with magnetic and/or lattice degrees of freedom. Given the dynamic nature of the field, we chose to focus mainly on reviewing the experimental data, as on the experimental side a general consensus has been reached, whereas interpretations and related theoretical models can vary significantly. The first part of the paper introduces photoemission spectroscopy in the context of strongly interacting systems, along with an update on the state-of-the-art instrumentation. The second part provides an overview of the scientific issues relevant to the investigation of the low-energy electronic structure by ARPES. The rest of the paper is devoted to the experimental results from the cuprates, and the discussion is organized along conceptual lines: normal-state electronic structure, interlayer interaction, superconducting gap, coherent superconducting peak, pseudogap, electron self-energy, and collective modes. Within each topic, ARPES data from the various copper oxides are presented.

3,077 citations


Cites background from "Orbital Physics in Transition-Metal..."

  • ...…notations, which is the approach we will also follow in 8For a more detailed description see Pickett (1989); Markiewicz (1991, 1997); Auerbach (1994); Dagotto (1994); Fulde (1995); Rao and Raveau (1995); Imada et al. (1998); Orenstein and Millis (2000); Sachdev (2000); Tokura and Nagaosa (2000)....

    [...]

Journal ArticleDOI
17 Jun 2010-Nature
TL;DR: Real-space imaging of a two-dimensional skyrmion lattice in a thin film of Fe0.5Co 0.5Si using Lorentz transmission electron microscopy reveals a controlled nanometre-scale spin topology, which may be useful in observing unconventional magneto-transport effects.
Abstract: Crystal order is not restricted to the periodic atomic array, but can also be found in electronic systems such as the Wigner crystal or in the form of orbital order, stripe order and magnetic order. In the case of magnetic order, spins align parallel to each other in ferromagnets and antiparallel in antiferromagnets. In other, less conventional, cases, spins can sometimes form highly nontrivial structures called spin textures. Among them is the unusual, topologically stable skyrmion spin texture, in which the spins point in all the directions wrapping a sphere. The skyrmion configuration in a magnetic solid is anticipated to produce unconventional spin-electronic phenomena such as the topological Hall effect. The crystallization of skyrmions as driven by thermal fluctuations has recently been confirmed in a narrow region of the temperature/magnetic field (T-B) phase diagram in neutron scattering studies of the three-dimensional helical magnets MnSi (ref. 17) and Fe(1-x)Co(x)Si (ref. 22). Here we report real-space imaging of a two-dimensional skyrmion lattice in a thin film of Fe(0.5)Co(0.5)Si using Lorentz transmission electron microscopy. With a magnetic field of 50-70 mT applied normal to the film, we observe skyrmions in the form of a hexagonal arrangement of swirling spin textures, with a lattice spacing of 90 nm. The related T-B phase diagram is found to be in good agreement with Monte Carlo simulations. In this two-dimensional case, the skyrmion crystal seems very stable and appears over a wide range of the phase diagram, including near zero temperature. Such a controlled nanometre-scale spin topology in a thin film may be useful in observing unconventional magneto-transport effects.

2,683 citations

Journal ArticleDOI
08 Jul 2005-Science
TL;DR: The spontaneous emergence of electronic nanometer-scale structures in transition metal oxides, and the existence of many competing states, are properties often associated with complex matter where nonlinearities dominate, such as soft materials and biological systems.
Abstract: A wide variety of experimental results and theoretical investigations in recent years have convincingly demonstrated that several transition metal oxides and other materials have dominant states that are not spatially homogeneous. This occurs in cases in which several physical interactions-spin, charge, lattice, and/or orbital-are simultaneously active. This phenomenon causes interesting effects, such as colossal magnetoresistance, and it also appears crucial to understand the high-temperature superconductors. The spontaneous emergence of electronic nanometer-scale structures in transition metal oxides, and the existence of many competing states, are properties often associated with complex matter where nonlinearities dominate, such as soft materials and biological systems. This electronic complexity could have potential consequences for applications of correlated electronic materials, because not only charge (semiconducting electronic), or charge and spin (spintronics) are of relevance, but in addition the lattice and orbital degrees of freedom are active, leading to giant responses to small perturbations. Moreover, several metallic and insulating phases compete, increasing the potential for novel behavior.

1,714 citations

Journal ArticleDOI
TL;DR: In this paper, the authors showed that the organic cation is not essential, but simply a convenience for forming lead triiodide perovskites with good photovoltaic properties.
Abstract: The vast majority of perovskite solar cell research has focused on organic–inorganic lead trihalide perovskites. Herein, we present working inorganic CsPbI3 perovskite solar cells for the first time. CsPbI3 normally resides in a yellow non-perovskite phase at room temperature, but by careful processing control and development of a low-temperature phase transition route we have stabilised the material in the black perovskite phase at room temperature. As such, we have fabricated solar cell devices in a variety of architectures, with current–voltage curve measured efficiency up to 2.9% for a planar heterojunction architecture, and stabilised power conversion efficiency of 1.7%. The well-functioning planar junction devices demonstrate long-range electron and hole transport in this material. Importantly, this work identifies that the organic cation is not essential, but simply a convenience for forming lead triiodide perovskites with good photovoltaic properties. We additionally observe significant rate-dependent current–voltage hysteresis in CsPbI3 devices, despite the absence of the organic polar molecule previously thought to be a candidate for inducing hysteresis via ferroelectric polarisation. Due to its space group, CsPbI3 cannot be a ferroelectric material, and thus we can conclude that ferroelectricity is not required to explain current–voltage hysteresis in perovskite solar cells. Our report of working inorganic perovskite solar cells paves the way for further developments likely to lead to much more thermally stable perovskite solar cells and other optoelectronic devices.

1,304 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, it was shown that both electrical conduction and ferromagnetic coupling in these compounds arise from a double exchange process, and a quantitative relation was developed between electrical conductivity and the Ferromagnetic Curie temperature.
Abstract: Recently, Jonker and Van Santen have found an empirical correlation between electrical conduction and ferromagnetism in certain compounds of manganese with perovskite structure. This observed correlation is herein interpreted in terms of those principles governing the interaction of the $d$-shells of the transition metals which were enunciated in the first paper of this series. Both electrical conduction and ferromagnetic coupling in these compounds are found to arise from a double exchange process, and a quantitative relation is developed between electrical conductivity and the ferromagnetic Curie temperature.

5,097 citations

Journal ArticleDOI
TL;DR: In this article, the theory of double exchange was applied to perovskite-type manganites and detailed qualitative predictions about the magnetic lattice, the crystallographic lattice and the electrical resistivity were made.
Abstract: The theory of semicovalent exchange is reviewed and applied to the perovskite-type manganites $[\mathrm{La}, M(\mathrm{II})]\mathrm{Mn}{\mathrm{O}}_{3}$. With the hypothesis of covalent and semicovalent bonding between the oxygen and manganese ions plus the mechanism of double exchange, detailed qualitative predictions are made about the magnetic lattice, the crystallographic lattice, the electrical resistivity, and the Curie temperature as functions of the fraction of ${\mathrm{Mn}}^{4+}$ present. These predictions are found to be in accord with recent findings from neutron-diffraction and x-ray data as well as with the earlier experiments on this system by Jonker and van Santen.

3,148 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that if the total electronic state of orbital and spin motion is degenerate, then a non-linear configuration of the molecule will be unstable unless the degeneracy is the special twofold one (discussed by Kramers 1930) which can occur only when the molecule contains an odd number of electrons.
Abstract: In a previous paper (Jahn and Teller 1937) the following theorem was established: A configuration of a polyatomic molecule for an electronic state having orbital degeneracy cannot be stable with respect to all displacements of the nuclei unless in the original configuration the nuclei all lie on a straight line. The proof given of this theorem took no account of the electronic spin, and in the present paper the justification of this is investigated. An extension of the theorem to cover additional degeneracy arising from the spin is established, which shows that if the total electronic state of orbital and spin motion is degenerate, then a non-linear configuration of the molecule will be unstable unless the degeneracy is the special twofold one (discussed by Kramers 1930) which can occur only when the molecule contains an odd number of electrons. The additional instability caused by the spin degeneracy alone, however, is shown to be very small and its effect for all practical purposes negligible. The possibility of spin forces stabilizing a non-linear configuration which is unstable owing to orbital degeneracy is also investigated, and it is shown that this is not possible except perhaps for molecules containing heavy atoms for which the spin forces are large. Thus whilst a symmetrical nuclear configuration in a degenerate orbital state might under exceptional circumstances be rendered stable by spin forces, it is not possible for the spin-orbit interaction to cause instability of an orbitally stable state. 1—General theorem for molecules with spin Just as before we must see how the symmetry of the molecular framework determines whether the energy of a degenerate electronic state with spin depends linearly upon nuclear displacements. This is again determined by the existence of non-vanishing perturbation matrix elements which are linear in the nuclear displacements. These matrix elements are integrals involving the electronic wave functions with spin and the nuclear dis­placements, and we deduce as before from their transformation properties whether for a given molecular symmetry they can be different from zero.

2,539 citations

Journal ArticleDOI
TL;DR: In this article, the sign of the superexchange interaction is closely connected with the symmetry of the electron orbitals and the cation orbital state when the cations are subject to the crystalline field arising from octahedral or tetrahedrally surrounding anions.

2,477 citations

Book
01 Jan 1963

2,273 citations


"Orbital Physics in Transition-Metal..." refers background in this paper

  • ...When more than two orbitals are involved, a variety of situations can be realized, and this quantum mechanical process depends on the orbitals (4, 5)....

    [...]