scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Ordered Network of Interconnected SnO2 Nanoparticles for Excellent Lithium-Ion Storage

TL;DR: An ordered network of interconnected tin oxide (SnO2) nanoparticles with a unique 3D architecture and an excellent lithium-ion (Li-ion) storage performance is derived for the first time through hydrolysis and thermal self-assembly of the solid alkoxide precursor as discussed by the authors.
Abstract: An ordered network of interconnected tin oxide (SnO2) nanoparticles with a unique 3D architecture and an excellent lithium-ion (Li-ion) storage performance is derived for the first time through hydrolysis and thermal self-assembly of the solid alkoxide precursor. Mesoporous anodes composed of these ≈9 nm-sized SnO2 particles exhibit substantially higher specific capacities, rate performance, coulombic efficiency, and cycling stabilities compared with disordered nanoparticles and commercial SnO2. A discharge capacity of 778 mAh g–1, which is very close to the theoretical limit of 781 mAh g–1, is achieved at a current density of 0.1 C. Even at high rates of 2 C (1.5 A g–1) and 6 C (4.7 A g–1), these ordered SnO2 nanoparticles retain stable specific capacities of 430 and 300 mAh g–1, respectively, after 100 cycles. Interconnection between individual nanoparticles and structural integrity of the SnO2 electrodes are preserved through numerous charge–discharge process cycles. The significantly better electrochemical performance of ordered SnO2 nanoparticles with a tap density of 1.60 g cm–3 is attributed to the superior electrode/electrolyte contact, Li-ion diffusion, absence of particle agglomeration, and improved strain relaxation (due to tiny space available for the local expansion). This comprehensive study demonstrates the necessity of mesoporosity and interconnection between individual nanoparticles for improving the Li-ion storage electrochemical performance of SnO2 anodes.
Citations
More filters
Journal ArticleDOI
TL;DR: A general route is reported to simple self-assembly of transition metal oxide (TMO) nanostructures on MXene (Ti3 C2 ) nanosheets through van der Waals interactions, making them promising high-power and high-energy anode materials for lithium-ion batteries.
Abstract: Recently, a new class of 2D materials, i.e., transition metal carbides, nitrides, and carbonitrides known as MXenes, is unveiled with more than 20 types reported one after another. Since they are flexible and conductive, MXenes are expected to compete with graphene and other 2D materials in many applications. Here, a general route is reported to simple self-assembly of transition metal oxide (TMO) nanostructures, including TiO2 nanorods and SnO2 nanowires, on MXene (Ti3 C2 ) nanosheets through van der Waals interactions. The MXene nanosheets, acting as the underlying substrate, not only enable reversible electron and ion transport at the interface but also prevent the TMO nanostructures from aggregation during lithiation/delithiation. The TMO nanostructures, in turn, serve as the spacer to prevent the MXene nanosheets from restacking, thus preserving the active areas from being lost. More importantly, they can contribute extraordinary electrochemical properties, offering short lithium diffusion pathways and additional active sites. The resulting TiO2 /MXene and SnO2 /MXene heterostructures exhibit superior high-rate performance, making them promising high-power and high-energy anode materials for lithium-ion batteries.

497 citations

Journal ArticleDOI
01 Feb 2016-Small
TL;DR: An in situ reduction method is developed to synthesize SnO2 quantum dots@graphene oxide by the oxidation of Sn(2+) and the reduction of the graphene oxide, resulting in a capacity retention of 86% even after 2000 cycles.
Abstract: Tin-based electrode s offer high theoretical capacities in lithium ion batteries, but further commercialization is strongly hindered by the poor cycling stability. An in situ reduction method is developed to synthesize SnO2 quantum dots@graphene oxide. This approach is achieved by the oxidation of Sn(2+) and the reduction of the graphene oxide. At 2 A g(-1), a capacity retention of 86% is obtained even after 2000 cycles.

331 citations

Journal ArticleDOI
01 Feb 2016-Small
TL;DR: A freestanding SnO2@N-CNF film prepared by electrospinning exhibits excellent flexibility and a high surface area when used as an anode for lithium-ion batteries.
Abstract: A freestanding SnO2@N-CNF film prepared by electrospinning exhibits excellent flexibility and a high surface area of 506 m(2) g(-1). When used as an anode for lithium-ion batteries, a high reversible capacity of 754 mAh g(-1) is maintained after the 300(th) cycle at 1 A g(-1) . Even when the current density increases to 5 A g(-1), the SnO2@N-CNF still delivers 245.9 mAh g(-1).

290 citations

Journal ArticleDOI
TL;DR: Transition metal oxides (TMOs) based on conversion reactions are attractive candidate anode materials for lithium-ion batteries (LIBs) because of their high theoretical capacity and safety characteristics as mentioned in this paper.
Abstract: Transition metal oxides (TMOs) based on conversion reactions are attractive candidate anode materials for lithium-ion batteries (LIBs) because of their high theoretical capacity and safety characteristics. In this review, we have summarized recent progress in the rational design and efficient synthesis of TMOs with controllable morphologies, compositions, and micro-/nanostructures, along with their Li storage behaviors. Single metal oxides of manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), ruthenium (Ru), chromium (Cr), molybdenum (Mo), and tungsten (W) and their common binary metal oxides have been discussed in this review. Finally, the less well-known merits of conversion reactions are put forward, and the design of metal oxide electrodes making full use of these merits has been proposed.

253 citations

Journal ArticleDOI
TL;DR: onductivity-directed microstructure development may offer a new approach to form advanced electrodes in lithium-ion batteries, and the addition of highly conductive, well-dispersed reduced graphene oxide further stabilizes and improves its performance.
Abstract: SnO2 -based lithium-ion batteries have low cost and high energy density, but their capacity fades rapidly during lithiation/delithiation due to phase aggregation and cracking. These problems can be mitigated by using highly conducting black SnO2-x , which homogenizes the redox reactions and stabilizes fine, fracture-resistant Sn precipitates in the Li2 O matrix. Such fine Sn precipitates and their ample contact with Li2 O proliferate the reversible Sn → Li x Sn → Sn → SnO2 /SnO2-x cycle during charging/discharging. SnO2-x electrode has a reversible capacity of 1340 mAh g-1 and retains 590 mAh g-1 after 100 cycles. The addition of highly conductive, well-dispersed reduced graphene oxide further stabilizes and improves its performance, allowing 950 mAh g-1 remaining after 100 cycles at 0.2 A g-1 with 700 mAh g-1 at 2.0 A g-1 . Conductivity-directed microstructure development may offer a new approach to form advanced electrodes.

203 citations

References
More filters
Journal ArticleDOI
06 Feb 2008-Nature
TL;DR: Researchers must find a sustainable way of providing the power their modern lifestyles demand to ensure the continued existence of clean energy sources.
Abstract: Researchers must find a sustainable way of providing the power our modern lifestyles demand.

15,980 citations

Journal ArticleDOI
28 Sep 2000-Nature
TL;DR: It is reported that electrodes made of nanoparticles of transition-metal oxides (MO), where M is Co, Ni, Cu or Fe, demonstrate electrochemical capacities of 700 mA h g-1, with 100% capacity retention for up to 100 cycles and high recharging rates.
Abstract: Rechargeable solid-state batteries have long been considered an attractive power source for a wide variety of applications, and in particular, lithium-ion batteries are emerging as the technology of choice for portable electronics. One of the main challenges in the design of these batteries is to ensure that the electrodes maintain their integrity over many discharge-recharge cycles. Although promising electrode systems have recently been proposed, their lifespans are limited by Li-alloying agglomeration or the growth of passivation layers, which prevent the fully reversible insertion of Li ions into the negative electrodes. Here we report that electrodes made of nanoparticles of transition-metal oxides (MO, where M is Co, Ni, Cu or Fe) demonstrate electrochemical capacities of 700 mA h g(-1), with 100% capacity retention for up to 100 cycles and high recharging rates. The mechanism of Li reactivity differs from the classical Li insertion/deinsertion or Li-alloying processes, and involves the formation and decomposition of Li2O, accompanying the reduction and oxidation of metal nanoparticles (in the range 1-5 nanometres) respectively. We expect that the use of transition-metal nanoparticles to enhance surface electrochemical reactivity will lead to further improvements in the performance of lithium-ion batteries.

7,404 citations

Journal ArticleDOI
TL;DR: Batteries, fuel cells and supercapacitors belong to the same family of energy conversion devices and are needed to service the wide energy requirements of various devices and systems.
Abstract: Electrochemical energy conversion devices are pervasive in our daily lives. Batteries, fuel cells and supercapacitors belong to the same family of energy conversion devices. They are all based on the fundamentals of electrochemical thermodynamics and kinetics. All three are needed to service the wide energy requirements of various devices and systems. Neither batteries, fuel cells nor electrochemical capacitors, by themselves, can serve all applications.

6,230 citations

Journal ArticleDOI
TL;DR: Li-ion battery technology has become very important in recent years as these batteries show great promise as power sources that can lead us to the electric vehicle (EV) revolution as mentioned in this paper.
Abstract: Li-ion battery technology has become very important in recent years as these batteries show great promise as power sources that can lead us to the electric vehicle (EV) revolution. The development of new materials for Li-ion batteries is the focus of research in prominent groups in the field of materials science throughout the world. Li-ion batteries can be considered to be the most impressive success story of modern electrochemistry in the last two decades. They power most of today's portable devices, and seem to overcome the psychological barriers against the use of such high energy density devices on a larger scale for more demanding applications, such as EV. Since this field is advancing rapidly and attracting an increasing number of researchers, it is important to provide current and timely updates of this constantly changing technology. In this review, we describe the key aspects of Li-ion batteries: the basic science behind their operation, the most relevant components, anodes, cathodes, electrolyte solutions, as well as important future directions for R&D of advanced Li-ion batteries for demanding use, such as EV and load-leveling applications.

5,531 citations

Journal ArticleDOI
TL;DR: This paper will describe lithium batteries in more detail, building an overall foundation for the papers that follow which describe specific components in some depth and usually with an emphasis on the materials behavior.
Abstract: In the previous paper Ralph Brodd and Martin Winter described the different kinds of batteries and fuel cells. In this paper I will describe lithium batteries in more detail, building an overall foundation for the papers that follow which describe specific components in some depth and usually with an emphasis on the materials behavior. The lithium battery industry is undergoing rapid expansion, now representing the largest segment of the portable battery industry and dominating the computer, cell phone, and camera power source industry. However, the present secondary batteries use expensive components, which are not in sufficient supply to allow the industry to grow at the same rate in the next decade. Moreover, the safety of the system is questionable for the large-scale batteries needed for hybrid electric vehicles (HEV). Another battery need is for a high-power system that can be used for power tools, where only the environmentally hazardous Ni/ Cd battery presently meets the requirements. A battery is a transducer that converts chemical energy into electrical energy and vice versa. It contains an anode, a cathode, and an electrolyte. The anode, in the case of a lithium battery, is the source of lithium ions. The cathode is the sink for the lithium ions and is chosen to optimize a number of parameters, discussed below. The electrolyte provides for the separation of ionic transport and electronic transport, and in a perfect battery the lithium ion transport number will be unity in the electrolyte. The cell potential is determined by the difference between the chemical potential of the lithium in the anode and cathode, ∆G ) -EF. As noted above, the lithium ions flow through the electrolyte whereas the electrons generated from the reaction, Li ) Li+ + e-, go through the external circuit to do work. Thus, the electrode system must allow for the flow of both lithium ions and electrons. That is, it must be both a good ionic conductor and an electronic conductor. As discussed below, many electrochemically active materials are not good electronic conductors, so it is necessary to add an electronically conductive material such as carbon * To whom correspondence should be addressed. Phone and fax: (607) 777-4623. E-mail: stanwhit@binghamton.edu. 4271 Chem. Rev. 2004, 104, 4271−4301

5,475 citations