scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Organic-Inorganic Hybrid Materials: From "Simple" Coordination Polymers to Organodiamine-Templated Molybdenum Oxides.

17 Sep 1999-Angewandte Chemie (Angew Chem Int Ed Engl)-Vol. 38, Iss: 18, pp 2638-2684
TL;DR: A blueprint for the design of oxide materials is provided by nature and members of the ever-expanding class of polymeric coordination complex cations, novel molybdenum oxide substructures, such as the one shown, may be prepared.
Abstract: A blueprint for the design of oxide materials is provided by nature. By borrowing from nature's ability to influence inorganic microstructures in biomineralization processes and in the hydrothermal synthesis of complex minerals, a new class of materials in which organic components exert a role in controlling inorganic microstructure is evolving. By employing members of the ever-expanding class of polymeric coordination complex cations, novel molybdenum oxide substructures, such as the one shown, may be prepared.
Citations
More filters
Journal ArticleDOI
TL;DR: Consideration of the geometric and chemical attributes of the SBUs and linkers leads to prediction of the framework topology, and in turn to the design and synthesis of a new class of porous materials with robust structures and high porosity.
Abstract: Secondary building units (SBUs) are molecular complexes and cluster entities in which ligand coordination modes and metal coordination environments can be utilized in the transformation of these fragments into extended porous networks using polytopic linkers (1,4-benzenedicarboxylate, 1,3,5,7-adamantanetetracarboxylate, etc.). Consideration of the geometric and chemical attributes of the SBUs and linkers leads to prediction of the framework topology, and in turn to the design and synthesis of a new class of porous materials with robust structures and high porosity.

4,753 citations

Journal ArticleDOI
TL;DR: In this paper, a geometrical analysis of π-π stacking in metal complexes with aromatic nitrogen-containing ligands was performed based on a Cambridge Structural Database search and on X-ray data of examples.
Abstract: A geometrical analysis has been performed on π–π stacking in metal complexes with aromatic nitrogen-containing ligands based on a Cambridge Structural Database search and on X-ray data of examples in the recent literature. It is evident that a face-to-face π–π alignment where most of the ring-plane area overlaps is a rare phenomenon. The usual π interaction is an offset or slipped stacking, i.e. the rings are parallel displaced. The ring normal and the vector between the ring centroids form an angle of about 20° up to centroid–centroid distances of 3.8 A. Such a parallel-displaced structure also has a contribution from π–σ attraction, the more so with increasing offset. Only a limited number of structures with a near to perfect facial alignment exists. The term π–π stacking is occasionally used even when there is no substantial overlap of the π-ring planes. There is a number of metal–ligand complexes where only the edges of the rings interact in what would be better described a C–H⋯π attraction.

3,881 citations

Journal ArticleDOI
TL;DR: In this paper, the development in the field of coordination polymers or metal-organic coordination networks, MOCNs (metal-organic frameworks, MOFs) is assessed in terms of property investigations in the areas of catalysis, chirality, conductivity, luminescence, magnetism, spin-transition (spin-crossover), nonlinear optics (NLO) and porosity or zeolitic behavior upon which potential applications could be based.
Abstract: The development in the field of coordination polymers or metal-organic coordination networks, MOCNs (metal-organic frameworks, MOFs) is assessed in terms of property investigations in the areas of catalysis, chirality, conductivity, luminescence, magnetism, spin-transition (spin-crossover), non-linear optics (NLO) and porosity or zeolitic behavior upon which potential applications could be based.

3,117 citations

Journal ArticleDOI
TL;DR: The diversity of magnetic exchange interactions between nearest-neighbour moment carriers is examined, covering from dimers to oligomers and their implications in infinite chains, layers and networks, having a variety of topologies.
Abstract: The purpose of this critical review is to give a representative and comprehensive overview of the arising developments in the field of magnetic metal–organic frameworks, in particular those containing cobalt(II). We examine the diversity of magnetic exchange interactions between nearest-neighbour moment carriers, covering from dimers to oligomers and discuss their implications in infinite chains, layers and networks, having a variety of topologies. We progress to the different forms of short-range magnetic ordering, giving rise to single-molecule-magnets and single-chain-magnets, to long-range ordering of two- and three-dimensional networks (323 references).

2,238 citations