scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Organic Materials for Third‐Order Nonlinear Optics

Hari Singh Nalwa1
01 May 1993-Advanced Materials (Wiley)-Vol. 5, Iss: 5, pp 341-358
TL;DR: The current status of organic low-molecular weight and polymeric materials for third-order nonlinear optics is reviewed in this paper, where the importance of organic materials lies in their promise of large nonlinear optical figure of merit, high optical damage thresholds, ultrafast optical responses, architectural flexibility, and ease of fabrication.
Abstract: The current status of organic low-molecular weight and polymeric materials for third-order nonlinear optics is reviewed. The importance of organic materials lies in their promise of large nonlinear optical figure of merit, high optical damage thresholds, ultrafast optical responses, architectural flexibility, and ease of fabrication. Organic materials exhibiting interesting third-order nonlinear optical properties are discussed to illustrate the importance of structure–property correlations. Results on emerging organic materials that include liquids, dyes, fullerenes, charge-transfer complexes, π-conjugated polymers, dye-grafted polymers, organometallic compounds, composites, and liquid crystals are presented. Organic nonlinear optical materials seem promising for a wide range of applications and their potential for integrated optics should be further explored.
Citations
More filters
Journal ArticleDOI
TL;DR: It is shown how charge transfer excitations at molecular complexes can be calculated quantitatively using time-dependent density functional theory, paving the way to systematic nonempirical quantitative studies of charge-transfer excitations in real systems.
Abstract: We show how charge transfer excitations at molecular complexes can be calculated quantitatively using time-dependent density functional theory Predictive power is obtained from range-separated hybrid functionals using nonempirical tuning of the range-splitting parameter Excellent performance of this approach is obtained for a series of complexes composed of various aromatic donors and the tetracyanoethylene acceptor, paving the way to systematic nonempirical quantitative studies of charge-transfer excitations in real systems

750 citations

Journal ArticleDOI
TL;DR: In this article, the structural chemistry and optical properties of recently synthesized porphyrin derivatives are reviewed for nonlinear optical applications and complement existing studies on phthalocyanines.
Abstract: Porphyrins and phthalocyanines have outstanding chemical and thermal stability. The macrocyclic structure and chemical reactivity of tetrapyrroles offers architectural flexibility and facilitates the tailoring of chemical, physical and optoelectronic parameters. The specific optical properties of the tetrapyrrole macrocycle combined with the synthetic methodologies now available and the already available theoretical and spectroscopic knowledge on their optical behavior make porphyrins a target of choice for this area. They are versatile organic nanomaterials with a rich photochemistry and their excited state properties are easily modulated through conformational design, molecular symmetry, metal complexation, orientation and strength of the molecular dipole moment, size and degree of conjugation of the π-systems, and appropriate donor-acceptor substituents. Here we review the structural chemistry and optical properties of recently synthesized porphyrin derivatives that offer potential for nonlinear optical (NLO) applications and complement existing studies on phthalocyanines. Classes of interest include the classic A4 symmetric tetrapyrroles, while optimized systems include push-pull porphyrins, oligomeric and supramolecular self-assembled systems, films and nanoparticle systems, and highly conjugated porphyrin arrays.

715 citations

References
More filters
Journal ArticleDOI
01 Nov 1985-Nature
TL;DR: In this article, the authors proposed a truncated icosahedron, a polygon with 60 vertices and 32 faces, 12 of which are pentagonal and 20 hexagonal.
Abstract: During experiments aimed at understanding the mechanisms by which long-chain carbon molecules are formed in interstellar space and circumstellar shells1, graphite has been vaporized by laser irradiation, producing a remarkably stable cluster consisting of 60 carbon atoms. Concerning the question of what kind of 60-carbon atom structure might give rise to a superstable species, we suggest a truncated icosahedron, a polygon with 60 vertices and 32 faces, 12 of which are pentagonal and 20 hexagonal. This object is commonly encountered as the football shown in Fig. 1. The C60 molecule which results when a carbon atom is placed at each vertex of this structure has all valences satisfied by two single bonds and one double bond, has many resonance structures, and appears to be aromatic. Before 1985, it was generally accepted that elemental carbon exists in two forms, or allotropes: diamond and graphite. Then, Kroto et al. identified the signature of a new, stable form of carbon that consisted of clusters of 60 atoms. They called this third allotrope of carbon 'buckminsterfullerene', and proposed that it consisted of polyhedral molecules in which the atoms were arrayed at the vertices of a truncated icosahedron. In 1990, the synthesis of large quantities of C60 [see Nature 347, 354–358 (1990)] confirmed this hypothesis.

13,394 citations

Book
01 Jan 1986
TL;DR: In this paper, the authors presented the theory and properties of conjugated polymers, including transport, optical, and self-assembly properties of poly(3,4-Ethylenedioxythiophene)-polymers.
Abstract: Volume 1: Conjugated Polymers: Theory, Synthesis, Properties, and Characterization PART 1: THEORY OF CONJUGATED POLYMERS On the Transport, Optical, and Self-Assembly Properties of -Conjugated Materials: A Combined Theoretical/Experimental Insight D. Beljonne, J. Cornil, V. Coropceanu, D.A. da Silva Filho, V. Geskin, R. Lazzaroni, P. Leclere, and J.-L. Bredas Theoretical Studies of Electron-Lattice Dynamics in Organic Systems S. Stafstroem PART 2: SYNTHESIS AND CLASSES OF CONJUGATED POLYMERS Helical Polyacetylene Synthesized in Chiral Nematic Liquid Crystals K. Akagi Synthesis and Properties of Poly(arylene vinylene)s A.C. Grimsdale and A.B. Holmes Blue-Emitting Poly(para-Phenylene)-Type Polymers E.J.W. List and U. Scherf Poly(paraPhenyleneethynylene)s and Poly(aryleneethynylene)s: Materials with a Bright Future U.H.F. Bunz Polyaniline Nanofibers: Synthesis, Properties, and Applications J. Huang and R.B. Kaner Recent Advances in Polypyrrole S.H. Cho, K.T. Song, and J.Y. Lee Regioregular Polythiophenes M. Jeffries-El and R.D. McCullough Poly(3,4-Ethylenedioxythiophene)-Scientific Importance, Remarkable Properties, and Applications S. Kirchmeyer, K. Reuter, and J.C. Simpson Thienothiophenes: From Monomers to Polymers G.A. Sotzing, V. Seshadri, and F.J. Waller Low Bandgap Conducting Polymers S.C. Rasmussen and M. Pomerantz Advanced Functional Polythiophenes Based on Tailored Precursors P. Blanchard, P. Leriche, P. Frere, and J. Roncali Structure-Property Relationships and Applications of Conjugated Polyelectrolytes K.S. Schanze and X. Zhao PART 3: PROPERTIES AND CHARACTERIZATION OF CONJUGATED POLYMERS Insulator-Metal Transition and Metallic State in Conducting Polymers A.J. Epstein One-Dimensional Charge Transport in Conducting Polymer Nanofibers A.N. Aleshin and Y.W. Park Structure Studies of - and - Conjugated Polymers M.J. Winokur Electrochemistry of Conducting Polymers P. Audebert and F. Miomandre Internal Fields and Electrode Interfaces in Organic Semiconductor Devices: Noninvasive Investigations via Electroabsorption T.M. Brown and F. Cacialli Electrochromism of Conjugated Conducting Polymers A.L. Dyer and J.R. Reynolds Photoelectron Spectroscopy of Conjugated Polymers M.P. de Jong, G. Greczyniski, W. Osikowicz, R. Friedlein, X. Crispin, M. Fahlman, and W.R. Salaneck Ultrafast Exciton Dynamics and Laser Action in -ConjugatedSemiconductors Z. Valy Vardeny and O. Korovyanko Volume 2: Conjugated Polymers: Processing and Applications PART 1: PROCESSING OF CONJUGATED POLYMERS Conductive Polymers as Organic Nanometals B. Wessling Conducting Polymer Fiber Production and Applications I.D. Norris and B.R. Mattes Inkjet Printing and Patterning of PEDOT-PSS: Application to Optoelectronic Devices Y. Yoshioka and G.E. Jabbour Printing Organic Electronics on Flexible Substrates N.D. Robinson and M. Berggren PART 2: APPLICATIONS AND DEVICES BASED ON CONJUGATED POLYMERS Polymers for Use in Polymeric Light-Emitting Diodes: Structure-Property Relationships H. Christian-Pandya, S. Vaidyanathan, and M. Galvin Organic Electro-Optic Materials L.R. Dalton Conjugated Polymer Electronics-Engineering Materials and Devices N. Tessler, J. Veres, O. Globerman, N. Rappaport, Y. Preezant, Y. Roichman, O. Solomesch, S. Tal, E. Gershman, M. Adler, V. Zolotarev, V. Gorelik, and Y. Eichen Electrical Bistable Polymer Films and Their Applications in Memory Devices J. Ouyang, C.-W. Chu, R.J. Tseng, A. Prakash, and Y. Yang Electroactive Polymers for Batteries and Supercapacitors J.A. Irvin, D.J. Irvin, and J.D. Stenger-Smith Conjugated Polymer-Based Photovoltaic Devices A.J. Mozer and N.S. Sariciftci Biomedical Applications of Inherently Conducting Polymers (ICPs),P.C. Innis, S.E. Moulton, and G.G. Wallace Biosensors Based on Conducting Electroactive Polymers S. Brahim, A.M. Wilson, and A. Guiseppi-Elie Optical Biosensors Based on Conjugated Polymers K. Peter, R. Nilsson, and O. Inganas Conjugated Polymers for Microelectromechanical and Other Microdevices G.M. Spinks and E. Smela Corrosion Protection Using Conducting Polymers D.E. Tallman and G.P. Bierwagen Artificial Muscles T.F. Otero

5,843 citations

Journal ArticleDOI
T. H. Maiman1
06 Aug 1960-Nature
TL;DR: Schawlow and Townes as discussed by the authors proposed a technique for the generation of very monochromatic radiation in the infra-red optical region of the spectrum using an alkali vapour as the active medium.
Abstract: Schawlow and Townes1 have proposed a technique for the generation of very monochromatic radiation in the infra-red optical region of the spectrum using an alkali vapour as the active medium. Javan2 and Sanders3 have discussed proposals involving electron-excited gaseous systems. In this laboratory an optical pumping technique has been successfully applied to a fluorescent solid resulting in the attainment of negative temperatures and stimulated optical emission at a wave-length of 6943 A. ; the active material used was ruby (chromium in corundum). After demonstration in 1954 of the 'maser' principle (microwave amplification by stimulated emission of radiation), systems were sought in which the effect occurred in the infrared and visible spectrum. This goal was reached in 1960 when Theodore Maiman achieved optical laser action in ruby.

3,893 citations

Journal Article
TL;DR: Schawlow and Townes as discussed by the authors proposed a technique for the generation of very monochromatic radiation in the infra-red optical region of the spectrum using an alkali vapour as the active medium.
Abstract: Schawlow and Townes1 have proposed a technique for the generation of very monochromatic radiation in the infra-red optical region of the spectrum using an alkali vapour as the active medium. Javan2 and Sanders3 have discussed proposals involving electron-excited gaseous systems. In this laboratory an optical pumping technique has been successfully applied to a fluorescent solid resulting in the attainment of negative temperatures and stimulated optical emission at a wave-length of 6943 A. ; the active material used was ruby (chromium in corundum). After demonstration in 1954 of the 'maser' principle (microwave amplification by stimulated emission of radiation), systems were sought in which the effect occurred in the infrared and visible spectrum. This goal was reached in 1960 when Theodore Maiman achieved optical laser action in ruby.

3,646 citations