scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Organic Non-Volatile Memory Based on Pentacene Field-Effect Transistors Using a Polymeric Gate Electret**

04 Dec 2006-Advanced Materials (Wiley)-Vol. 18, Iss: 23, pp 3179-3183
TL;DR: In this paper, a poly(a-methylstyrene) (PaMS) layer was added to the SiO2 gate insulator and the pentacene channel in the typical OFET structure, and the results indicated reasonably good OFET behavior, suggesting the additional PaMS layer does not degrade the performance of the devices.
Abstract: electrets. In this Communication, we report on OFET memory devices built on silicon wafers and based on films of pentacene and an SiO2 gate insulator that are separated by a thin layer of poly(a-methylstyrene) (PaMS), which acts as a polymeric gate dielectric. This OFET memory device displayed reversible shifts in the threshold voltage (VTh) when an appropriate gate voltage (Vg) was applied above a certain threshold via a relatively short switching time. Based on these reversible shifts in VTh, a non-volatile organic memory was demonstrated that takes advantage of the simple configuration of a typical OFET. This device showed a large memory window (about 90 V), a high on/off ratio (IOn/IOff) (10 5 ), a short switching time (less than 1 ls), and a long retention time (more than 100 h). These memory characteristics were obtained only when an appropriate polymeric gate electret layer (e.g., PaMS) was inserted between the SiO2 gate insulator and the pentacene channel in the typical OFET structure. Therefore, it is possible that this behavior originates from the modulation of the gate field by stored charges in the polymeric gate electret. Detailed reasons for these results and a possible operating mechanism for our OFET memory device are discussed. A cross-sectional view of the fabricated device structure is shown in Figure 1a. Further details concerning the fabrication of this device are discussed in the Experimental section. Figure 1b and c shows the output and transfer characteristics of the devices, respectively. The results indicate reasonably good OFET behavior, suggesting the additional PaMS layer does not degrade the performance of the devices. [14] From the conventional characterization equation, [15] the measured values of the typical field-effect mobility (lFET), VTh, and IOn/IOff were 0.51 cm 2 V –1 s –1 (maximum value, 0.89 cm 2 V –1 s –1 ), – 19 V, and 10 5 , respectively. These transistor properties could
Citations
More filters
Journal ArticleDOI
TL;DR: This review provides a summary of the widely reported electrical switching phenomena in polymers and the corresponding polymer electronic memories.

902 citations

Journal ArticleDOI
TL;DR: The history, current status of research, main challenges and prospects for functional OFETs are all discussed, in order to provide a comprehensive overview of this field.
Abstract: Functional organic field-effect transistors (OFETs) have attracted increasing attention in the past few years due to their wide variety of potential applications. Research on functional OFETs underpins future advances in organic electronics. In this review, different types of functional OFETs including organic phototransistors, organic memory FETs, organic light emitting FETs, sensors based on OFETs and other functional OFETs are introduced. In order to provide a comprehensive overview of this field, the history, current status of research, main challenges and prospects for functional OFETs are all discussed.

518 citations

Journal ArticleDOI
R.C.G. Naber, Kamal Asadi, Paul W. M. Blom, Dago M. de Leeuw1, Bert de Boer 
TL;DR: The latest developments in organic nonvolatile memory devices based on ferroelectricity are discussed with a focus on three of the most important device concepts: ferro electric capacitors, field-effect transistors, and diodes.
Abstract: A memory functionality is a prerequisite for many applications of electronic devices. Organic nonvolatile memory devices based on ferroelectricity are a promising approach toward the development of a low-cost memory technology. In this Review Article we discuss the latest developments in this area with a focus on three of the most important device concepts: ferroelectric capacitors, field-effect transistors, and diodes. Integration of these devices into larger memory arrays is also discussed.

510 citations

Journal ArticleDOI
TL;DR: In this article, the role of π-conjugated materials in the operation of nonvolatile memory devices is reviewed and a review of the state of the art with respect to these target specifications is presented.
Abstract: Organic molecules and semiconductors have been proposed as active part of a large variety of nonvolatile memory devices, including resistors, diodes and transistors. In this review, we focus on electrically reprogrammable nonvolatile memories. We classify several possible devices according to their operation principle and critically review the role of the π-conjugated materials in the device operation. We propose specifications for applications for organic nonvolatile memory and review the state of the art with respect to these target specifications. Conclusions are drawn regarding further work on materials and device architectures.

487 citations

Journal ArticleDOI
TL;DR: Key strategies towards multi- functional integration of OFETs, which involves the exploration of functional materials, interfaces modifications, modulation of condensed structures, optimization of device geometry, and device integration, are summarized.
Abstract: Multi-functional organic field-effect transistors (OFETs), an emerging focus of organic optoelectronic devices, hold great potential for a variety of applications. This report introduces recent progress on multi-functional OFETs including OFETs based sensors, phototransistors, light-emitting transistors, memory cells, and magnetic field-effect OFETs. Key strategies towards multi- functional integration of OFETs, which involves the exploration of functional materials, interfaces modifications, modulation of condensed structures, optimization of device geometry, and device integration, are summarized. Furthermore, remaining challenges and perspectives are discussed, giving a comprehensive overview of multi-functional OFETs.

285 citations

References
More filters
Proceedings Article
01 Jan 1969

16,580 citations

Journal ArticleDOI
29 Apr 2004-Nature
TL;DR: The future holds even greater promise for this technology, with an entirely new generation of ultralow-cost, lightweight and even flexible electronic devices in the offing, which will perform functions traditionally accomplished using much more expensive components based on conventional semiconductor materials such as silicon.
Abstract: Organic electronics are beginning to make significant inroads into the commercial world, and if the field continues to progress at its current, rapid pace, electronics based on organic thin-film materials will soon become a mainstay of our technological existence. Already products based on active thin-film organic devices are in the market place, most notably the displays of several mobile electronic appliances. Yet the future holds even greater promise for this technology, with an entirely new generation of ultralow-cost, lightweight and even flexible electronic devices in the offing, which will perform functions traditionally accomplished using much more expensive components based on conventional semiconductor materials such as silicon.

4,967 citations

Journal ArticleDOI
TL;DR: In this article, the authors present new insight into conduction mechanisms and performance characteristics, as well as opportunities for modeling properties of organic thin-film transistors (OTFTs) and discuss progress in the growing field of n-type OTFTs.
Abstract: Organic thin-film transistors (OTFTs) have lived to see great improvements in recent years. This review presents new insight into conduction mechanisms and performance characteristics, as well as opportunities for modeling properties of OTFTs. The shifted focus in research from novel chemical structures to fabrication technologies that optimize morphology and structural order is underscored by chapters on vacuum-deposited and solution-processed organic semiconducting films. Finally, progress in the growing field of the n-type OTFTs is discussed in ample detail. The Figure, showing a pentacene film edge on SiO2, illustrates the morphology issue.

4,804 citations

Journal ArticleDOI
TL;DR: In this article, the materials, charge-transport, and device physics of solution-processed organic field-effect transistors are reviewed, focusing in particular on the physics of the active semiconductor/dielectric interface.
Abstract: Field-effect transistors based on solution-processible organic semiconductors have experienced impressive improvements in both performance and reliability in recent years, and printing-based manufacturing processes for integrated transistor circuits are being developed to realize low-cost, large-area electronic products on flexible substrates. This article reviews the materials, charge-transport, and device physics of solution-processed organic field-effect transistors, focusing in particular on the physics of the active semiconductor/dielectric interface. Issues such as the relationship between microstructure and charge transport, the critical role of the gate dielectric, the influence of polaronic relaxation and disorder effects on charge transport, charge-injection mechanisms, and the current understanding of mechanisms for charge trapping are reviewed. Many interesting questions on how the molecular and electronic structures and the presence of defects at organic/organic heterointerfaces influence the device performance and stability remain to be explored.

1,651 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe a scenario where they are in the last stages of typing their thesis, the year is 1980, and it's a hot, hazy summer afternoon, a thunderstorm brews on the horizon.
Abstract: Imagine you are in the last stages of typing your thesis, the year is 1980, and it's a hot, hazy summer afternoon, a thunderstorm brews on the horizon. Tense and tired, you have forgotten to save the document on your hard disk. Suddenly, lightning strikes! Your computer shuts down. Your final chapter is lost.

1,179 citations