scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Organic reactions in aqueous media - with a focus on carbon-carbon bond formation

01 Sep 1993-Chemical Reviews (American Chemical Society)-Vol. 93, Iss: 6, pp 2023-2035
TL;DR: In the last decade, there has been increasing recognition that organic reactions carried out in aqueous media may offer advantages over those occurring in organic solvents as discussed by the authors, which is the essence of organic synthesis.
Abstract: Carbon-carbon bond formation is the essence of organic synthesis. Although the well-known Kolbe synthesis was discovered in 1849Ia (the first observation wasmadein 1834byFaraday),'bformorethanacentury, carbon-carbon bond formation in aqueous media has been limited mainly to electrochemical processes and aldol condensation reactions. This is in contrast to the many enzymatic processes that by necessity must occur in an aqueous environment. In the last decade, there has been increasing recognition that organic reactions carried out in aqueous media may offer advantages over those occurring in organic solvents. For example, protection and deprotection processes in organic synthesis can possibly be simplified. This review will survey this area, concentrating mainly on the last decade. The review is organized into three main portions: nonorganometallic reactions, organometallic reactions, and transition-metal-catalyzed organic reactions in aqueous media. The conventional aldol-type and related reactions, stabilized carbanion alkylation reactions, electrochemical reactions as well as bioorganic reactions involving aqueous media and leading to carbon-carbon bond formation will not be included.
Citations
More filters
Journal ArticleDOI
Chao-Jun Li1
TL;DR: Reaction of R,â-Unsaturated Carbonyl Compounds 3127: Reaction of R-UnSaturated Carbonies 3127 7.1.6.
Abstract: 4.2.8. Reductive Coupling 3109 5. Reaction of Aromatic Compounds 3110 5.1. Electrophilic Substitutions 3110 5.2. Radical Substitution 3111 5.3. Oxidative Coupling 3111 5.4. Photochemical Reactions 3111 6. Reaction of Carbonyl Compounds 3111 6.1. Nucleophilic Additions 3111 6.1.1. Allylation 3111 6.1.2. Propargylation 3120 6.1.3. Benzylation 3121 6.1.4. Arylation/Vinylation 3121 6.1.5. Alkynylation 3121 6.1.6. Alkylation 3121 6.1.7. Reformatsky-Type Reaction 3122 6.1.8. Direct Aldol Reaction 3122 6.1.9. Mukaiyama Aldol Reaction 3124 6.1.10. Hydrogen Cyanide Addition 3125 6.2. Pinacol Coupling 3126 6.3. Wittig Reactions 3126 7. Reaction of R,â-Unsaturated Carbonyl Compounds 3127

2,031 citations

Journal ArticleDOI
TL;DR: This Review highlights the recent progress in the field of cross-dehydrogenative C sp 3C formations and provides a comprehensive overview on existing procedures and employed methodologies.
Abstract: Over the last decade, substantial research has led to the introduction of an impressive number of efficient procedures which allow the selective construction of CC bonds by directly connecting two different CH bonds under oxidative conditions. Common to these methodologies is the generation of the reactive intermediates in situ by activation of both CH bonds. This strategy was introduced by the group of Li as cross-dehydrogenative coupling (CDC) and discloses waste-minimized synthetic alternatives to classic coupling procedures which rely on the use of prefunctionalized starting materials. This Review highlights the recent progress in the field of cross-dehydrogenative C sp 3C formations and provides a comprehensive overview on existing procedures and employed methodologies.

1,528 citations

Journal ArticleDOI
Ulf Lindström1

1,477 citations

Journal ArticleDOI
TL;DR: This workFloat their problematic reactions on water and to send observations of success or failure to us at onwater@scripps.edu for public dissemination with attribution.
Abstract: [*] Dr. S. Narayan, Dr. J. Muldoon, Prof. M. G. Finn, Prof. V. V. Fokin, Prof. H. C. Kolb, Prof. K. B. Sharpless Department of Chemistry and the Skaggs Institute of Chemical Biology The Scripps Research Institute 10550 North Torrey Pines Road La Jolla, CA 92037 (USA) Fax: (+ 1)619-554-6738 E-mail: sharples@scripps.edu [**] We thank Dr. Vladislav Litosh for carrying out preliminary work. Support from the National Institutes of Health, National Institute of General Medical Sciences (GM 28384), the National Science Foundation (CHE9985553), the Skaggs Institute for Chemical Biology, and the W. M. Keck Foundation is gratefully acknowledged. S.N. thanks the Skaggs Institute for a postdoctoral fellowship. We also thank Dr. Suresh Suri, Edwards Air Force Base, California, for a generous gift of quadricyclane. We urge our fellow chemists to float their problematic reactions on water and to send observations of success or failure to us at onwater@scripps.edu for public dissemination with attribution. Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author. Angewandte Chemie

1,393 citations

Journal ArticleDOI
TL;DR: The currently burgeoning field of organic synthesis in aqueous media encompasses a large family of reactions, and water is still not commonly used as a sole solvent for organic synthesis, at least in part because most organic compounds do not dissolve in water to a significant extent.
Abstract: Water is the lingua franca of life on our planet and is the solvent of choice for Nature to carry out her syntheses.1 In contrast, our methods of making complex organic molecules have taken us far away from the watery milieu of biosynthesis. Indeed, it is fair to say that most organic reactions commonly used both in academic laboratories and in industry fail in the presence of water or oxygen. As a direct consequence of our attempts to mimick Nature's way of making new chemical bonds, we learned to rely on highly reactive nucleophilic and electrophilic reagents to gain control of the chemical reactivity and to channel chemical reactions down a desired pathway. The requirement for the protection of all protic functional groups, such as alcohols and amines, is another corollary of our reliance on these energetic species. Nevertheless, chemical transformations in aqueous solvents are not new to organic chemists. On the contrary, they have attracted attention of scientists for many years: the first use of water for an organic reaction could be dated back to Wohler's synthesis of urea from ammonium cyanate.2 From a true organic synthesis perspective, the earliest example could be the synthesis of indigo by Baeyer and Drewsen in 1882 (Scheme 1).3 In their synthesis, a suspension of o-nitrobenzaldehyde 1 in aqueous acetone was treated with a solution of sodium hydroxide. The immediate formation of the characteristic blue color of indigo 2 ensued, and the product subsequently precipitated. Scheme 1 Water possesses many unique physical and chemical properties: large temperature window in which it remains in the liquid state, extensive hydrogen bonding, high heat capacity, large dielectric constant, and optimum oxygen solubility to maintain aquatic life forms. These distinctive properties are the consequence of the unique structure of water.4,5 The structure and properties of water have been studied by scientists representing almost all fields of knowledge, and new theoretical models continue to emerge.6,7 Water is also known to enhance the rates and to affect the selectivity of a wide variety of organic reactions.8,9 In spite of these potential advantages, water is still not commonly used as a sole solvent for organic synthesis, at least in part because most organic compounds do not dissolve in water to a significant extent, and solubility is generally considered a prerequisite for reactivity: “corpora non agunt nisi soluta” (substances do not react unless dissolved). Consequently, in the many examples of “aqueous reactions” organic co-solvents are employed in order to increase the solubility of organic reactants in water.9,10 Alternatively, hydrophilicity of the reactants is increased by the introduction of polar functional groups, again to make the resulting compound at least partially water soluble.11 However, these manipulations tend to diminish and even negate the advantages of low cost, simplicity of reaction conditions, ease of workup, and product isolation that water has over traditional solvents. Therefore, the currently burgeoning field of organic synthesis in aqueous media encompasses a large family of reactions. The solubility of reacting species and products can range from complete to partial to practically none, so that reaction mixtures can be both homogeneous and heterogeneous. The amount of water can also range widely, from substoichiometric quantities to a large volume in which the reactants are suspended or dissolved. Several terms have been used in the literature to describe reactions in aqueous millieu. In water, in the presence of water, and on water are commonly found in the recent publications and are often used interchangeably to describe reactions that proceed under very different conditions.12,13 There is also a growing number of examples micellar catalysis in the presence of non-ionic surfactants, such as Triton X-100 and PTS (a tocopherol-based amphiphile).14-18 In this review, we attempt to survey organic transformations that benefit from being performed on water under the conditions defined by Sharpless and co-workers: when insoluble reactant(s) are stirred in aqueous emulsions or suspensions without the addition of any organic co-solvents. In many cases, it is impossible to ascertain whether the reaction is occuring in or on water, but as long as the reaction mixture remains heterogeneous and the overall process appears to benefit from it (either in terms of increased reaction rate or enhanced selectivity), it qualifies. The ‘on water’ moniker reflects the defining attribute of these reactions: the lack of solubility of the reactant(s) in water. A considerable rate acceleration is often observed in reactions carried out under these conditions over those in organic solvents.19 Furthermore, in many cases a significant rate increase of on water reactions over reactions carried out neat indicates that rate acceleration is not merely a consequence of increased concentration of the reacting species. Naturally, the degree of on water acceleration varies between different reaction classes, and even when it is modest, there are other advantages to carrying out reactions in this manner. Firstly, water is an excellent heat sink due to its large heat capacity, making exothermic processes safer and more selective, especially when they are carried out on large scale. Secondly, reactions of water-insoluble substrates usually lead to the formation of water-insoluble products. In such cases, product isolation simply involves filtration of solid products (or phase separation in case of liquids). Finally, the growing list of examples wherein reactions performed on water are not only faster but also more selective (whether chemo-, regio-, or enantio-) underscores the significant potential for process intensification for reactions performed on water. Although claims of the ecological advantages and “greenness” of water are almost invariably found in the opening paragraphs of reports describing aqueous reactions, they should be taken with a grain of salt. The low cost, relative abundance, and inherent safety of water notwithstanding, the environmental impact of a process is determined by many factors, such as the efficiency of the reaction in terms of atom economy,20 the nature of solvents used in the reaction workup, the residual concentration of regulated organic compounds and metal catalysts remaining in the aqueous waste, and the costs of its clean up or disposal.21,22 The mere finding that a process performs as well in water as it does in an organic solvent tells us little about its potential environmental impact. The field of aqueous organic synthesis has been regularly and comprehensively reviewed.9,10,23-27 In addition, recent reviews focusing on microwave assisted organic synthesis in water,28 reactions in near-critical water,29 and biocatalysis in water30 have been published. Accordingly, these topics are not covered in the present review.

1,313 citations

References
More filters
Book
01 Jan 1985

952 citations