scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Organizing cell renewal in the intestine : stem cells, signals and combinatorial control

01 May 2006-Nature Reviews Genetics (Nature Publishing Group)-Vol. 7, Iss: 5, pp 349-359
TL;DR: A flurry of recent papers has clarified the key regulatory signals and brought us to the point where the authors can begin to give a coherent account, for at least one tissue, of how these signals collaborate to organize the architecture and behaviour of a stem-cell system.
Abstract: The lining of the intestine is renewed at an extraordinary rate, outpacing all other tissues in the vertebrate body. The renewal process is neatly organized in space, so that the whole production line, from the ever-youthful stem cells to their dying, terminally differentiated progeny, is laid out to view in histological sections. A flurry of recent papers has clarified the key regulatory signals and brought us to the point where we can begin to give a coherent account, for at least one tissue, of how these signals collaborate to organize the architecture and behaviour of a stem-cell system.
Citations
More filters
Journal ArticleDOI
TL;DR: This Review provides a comprehensive overview of how IECs maintain host–commensal microbial relationships and immune cell homeostasis in the intestine.
Abstract: The abundance of innate and adaptive immune cells that reside together with trillions of beneficial commensal microorganisms in the mammalian gastrointestinal tract requires barrier and regulatory mechanisms that conserve host-microbial interactions and tissue homeostasis. This homeostasis depends on the diverse functions of intestinal epithelial cells (IECs), which include the physical segregation of commensal bacteria and the integration of microbial signals. Hence, IECs are crucial mediators of intestinal homeostasis that enable the establishment of an immunological environment permissive to colonization by commensal bacteria. In this Review, we provide a comprehensive overview of how IECs maintain host-commensal microbial relationships and immune cell homeostasis in the intestine.

2,046 citations

Journal ArticleDOI
TL;DR: It is reported here that YAP1 increases organ size and causes aberrant tissue expansion in mice and that the Hippo signaling pathway regulates organ size in mammals and can act on stem cell compartments, indicating a potential link between stem/progenitor cells, organ size, and cancer.

1,144 citations


Cites background from "Organizing cell renewal in the inte..."

  • ...Prevention of YAP1 Induced Dysplasia by g-Secretase Inhibitors Notch signaling is also important for the maintenance of undifferentiated progenitor/stem cells in the small intestine [23]....

    [...]

Journal ArticleDOI
13 Oct 2011-Nature
TL;DR: It is found that complete loss of the Lgr5-expressing cells did not perturb homeostasis of the epithelium, indicating that other cell types can compensate for the elimination of this population, and that in the absence of these cells, Bmi1- expressing cells can serve as an alternative stem cell pool.
Abstract: The small intestine epithelium renews every 2 to 5 days, making it one of the most regenerative mammalian tissues. Genetic inducible fate mapping studies have identified two principal epithelial stem cell pools in this tissue. One pool consists of columnar Lgr5-expressing cells that cycle rapidly and are present predominantly at the crypt base. The other pool consists of Bmi1-expressing cells that largely reside above the crypt base. However, the relative functions of these two pools and their interrelationship are not understood. Here we specifically ablated Lgr5-expressing cells in mice using a human diphtheria toxin receptor (DTR) gene knocked into the Lgr5 locus. We found that complete loss of the Lgr5-expressing cells did not perturb homeostasis of the epithelium, indicating that other cell types can compensate for the elimination of this population. After ablation of Lgr5-expressing cells, progeny production by Bmi1-expressing cells increased, indicating that Bmi1-expressing stem cells compensate for the loss of Lgr5-expressing cells. Indeed, lineage tracing showed that Bmi1-expressing cells gave rise to Lgr5-expressing cells, pointing to a hierarchy of stem cells in the intestinal epithelium. Our results demonstrate that Lgr5-expressing cells are dispensable for normal intestinal homeostasis, and that in the absence of these cells, Bmi1-expressing cells can serve as an alternative stem cell pool. These data provide the first experimental evidence for the interrelationship between these populations. The Bmi1-expressing stem cells may represent both a reserve stem cell pool in case of injury to the small intestine epithelium and a source for replenishment of the Lgr5-expressing cells under non-pathological conditions.

1,003 citations

Journal ArticleDOI
26 Jun 2009-Cell
TL;DR: It is shown that when enterocytes in the Drosophila midgut are subjected to apoptosis, enteric infection, or JNK-mediated stress signaling, they produce cytokines that activate Jak/Stat signaling in ISCs, promoting their rapid division and enabling stem cells to replace spent progeny as they are lost, thereby establishing gut homeostasis.

893 citations


Cites background from "Organizing cell renewal in the inte..."

  • ...More sophisticated models that do incorporate feedback have been discussed; for instance, negative cross-talk between BMP signaling in the villi and WNT signaling in the crypts might allow true homeostasis (Crosnier et al., 2006; Gregorieff and Clevers, 2005)....

    [...]

Journal ArticleDOI
TL;DR: Robust long-term methodology for small and large intestinal culture, incorporating an air-liquid interface and underlying stromal elements is described, indicating successful long- term intestinal culture within a microenvironment accurately recapitulating the Wnt- and Notch-dependent ISC niche.
Abstract: The in vitro analysis of intestinal epithelium has been hampered by a lack of suitable culture systems. Here we describe robust long-term methodology for small and large intestinal culture, incorporating an air-liquid interface and underlying stromal elements. These cultures showed prolonged intestinal epithelial expansion as sphere-like organoids with proliferation and multilineage differentiation. The Wnt growth factor family positively regulates proliferation of the intestinal epithelium in vivo. Accordingly, culture growth was inhibited by the Wnt antagonist Dickkopf-1 (Dkk1) and markedly stimulated by a fusion protein between the Wnt agonist R-spondin-1 and immunoglobulin Fc (RSpo1-Fc). Furthermore, treatment with the gamma-secretase inhibitor dibenzazepine and neurogenin-3 overexpression induced goblet cell and enteroendocrine cell differentiation, respectively, consistent with endogenous Notch signaling and lineage plasticity. Epithelial cells derived from both leucine-rich repeat-containing G protein-coupled receptor-5-positive (Lgr5(+)) and B lymphoma moloney murine leukemia virus insertion region homolog-1-positive (Bmi1(+)) lineages, representing putative intestinal stem cell (ISC) populations, were present in vitro and were expanded by treatment with RSpo1-Fc; this increased number of Lgr5(+) cells upon RSpo1-Fc treatment was subsequently confirmed in vivo. Our results indicate successful long-term intestinal culture within a microenvironment accurately recapitulating the Wnt- and Notch-dependent ISC niche.

753 citations

References
More filters
Journal ArticleDOI
TL;DR: The data reveal that multiple extracellular, cytoplasmic, and nuclear regulators intricately modulate Wnt signaling levels, and that receptor-ligand specificity and feedback loops help to determine WNT signaling outputs.
Abstract: Tight control of cell-cell communication is essential for the generation of a normally patterned embryo. A critical mediator of key cell-cell signaling events during embryogenesis is the highly conserved Wnt family of secreted proteins. Recent biochemical and genetic analyses have greatly enriched our understanding of how Wnts signal, and the list of canonical Wnt signaling components has exploded. The data reveal that multiple extracellular, cytoplasmic, and nuclear regulators intricately modulate Wnt signaling levels. In addition, receptor-ligand specificity and feedback loops help to determine Wnt signaling outputs. Wnts are required for adult tissue maintenance, and perturbations in Wnt signaling promote both human degenerative diseases and cancer. The next few years are likely to see novel therapeutic reagents aimed at controlling Wnt signaling in order to alleviate these conditions.

5,129 citations


"Organizing cell renewal in the inte..." refers background in this paper

  • ...Wnt signalling maintains proliferation The Wnt signalling pathway...

    [...]

Journal ArticleDOI
21 Mar 1997-Science
TL;DR: Results indicate that regulation of β-catenin is critical to APC's tumor suppressive effect and that this regulation can be circumvented by mutations in either APC or β- catenin.
Abstract: Inactivation of the adenomatous polyposis coli (APC) tumor suppressor gene initiates colorectal neoplasia. One of the biochemical activities associated with the APC protein is down-regulation of transcriptional activation mediated by beta-catenin and T cell transcription factor 4 (Tcf-4). The protein products of mutant APC genes present in colorectal tumors were found to be defective in this activity. Furthermore, colorectal tumors with intact APC genes were found to contain activating mutations of beta-catenin that altered functionally significant phosphorylation sites. These results indicate that regulation of beta-catenin is critical to APC's tumor suppressive effect and that this regulation can be circumvented by mutations in either APC or beta-catenin.

3,859 citations

Journal ArticleDOI
21 Mar 1997-Science
TL;DR: Constitutive transcription of Tcf target genes, caused by loss of APC function, may be a crucial event in the early transformation of colonic epithelium.
Abstract: The adenomatous polyposis coli (APC) tumor suppressor protein binds to beta-catenin, a protein recently shown to interact with Tcf and Lef transcription factors. The gene encoding hTcf-4, a Tcf family member that is expressed in colonic epithelium, was cloned and characterized. hTcf-4 transactivates transcription only when associated with beta-catenin. Nuclei of APC-/- colon carcinoma cells were found to contain a stable beta-catenin-hTcf-4 complex that was constitutively active, as measured by transcription of a Tcf reporter gene. Reintroduction of APC removed beta-catenin from hTcf-4 and abrogated the transcriptional transactivation. Constitutive transcription of Tcf target genes, caused by loss of APC function, may be a crucial event in the early transformation of colonic epithelium.

3,357 citations


"Organizing cell renewal in the inte..." refers background in this paper

  • ...Converse effects are seen when the Wnt pathway is overactivated by mutations in adenomatous polyposis coli ( Apc ), β-catenin, or other Wnt pathway components, leading to the constitutive activation of downstream targets of the canonical Wnt pathwa...

    [...]

Journal ArticleDOI
22 May 2003-Nature
TL;DR: It is concluded that the Wnt signalling pathway is critical for normal HSC homeostasis in vitro and in vivo, and insight is provided into a potential molecular hierarchy of regulation of HSC development.
Abstract: Haematopoietic stem cells (HSCs) have the ability to renew themselves and to give rise to all lineages of the blood; however, the signals that regulate HSC self-renewal remain unclear. Here we show that the Wnt signalling pathway has an important role in this process. Overexpression of activated beta-catenin expands the pool of HSCs in long-term cultures by both phenotype and function. Furthermore, HSCs in their normal microenvironment activate a LEF-1/TCF reporter, which indicates that HCSs respond to Wnt signalling in vivo. To demonstrate the physiological significance of this pathway for HSC proliferation we show that the ectopic expression of axin or a frizzled ligand-binding domain, inhibitors of the Wnt signalling pathway, leads to inhibition of HSC growth in vitro and reduced reconstitution in vivo. Furthermore, activation of Wnt signalling in HSCs induces increased expression of HoxB4 and Notch1, genes previously implicated in self-renewal of HSCs. We conclude that the Wnt signalling pathway is critical for normal HSC homeostasis in vitro and in vivo, and provide insight into a potential molecular hierarchy of regulation of HSC development.

2,282 citations

Journal ArticleDOI
18 Oct 2002-Cell
TL;DR: The β-catenin/TCF-4 complex constitutes the master switch that controls proliferation versus differentiation in healthy and malignant intestinal epithelial cells.

1,972 citations


"Organizing cell renewal in the inte..." refers background in this paper

  • ...In the gut, Wnt signalling switches on expression of EphB2 and EphB3 and inhibits expression of ephrin B1 (Ref...

    [...]