scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Origin of Bistability in the Butyl-Substituted Spirobiphenalenyl-Based Neutral Radical Material

07 Jun 2017-Chemistry: A European Journal (John Wiley & Sons, Ltd)-Vol. 23, Iss: 32, pp 7772-7784
TL;DR: The results show that coupling a spin switch with a conformational switch in a molecular crystal provides a promising strategy in the design of new bistable materials.
Abstract: One of the most remarkable bistable materials reported so far is made of π dimers of a butyl-substituted spirobiphenalenyl boron radical (butyl-SBP). The phase transition of this material, which is accompanied by changes in its optical, conductive, and magnetic properties, occurs with a hysteretic loop 25 K wide centered at 335 K. Herein, a computational study is presented aimed at deciphering the origin of this hysteresis. The phase transition of butyl-SBP consists of a spin transition of the constituent π dimers coupled with an order-disorder transition involving the butyl chains linked to the nitrogen atoms of the superimposed phenalenyl rings of the π dimer. Below 335 K, the terminal methyl group of the butyl chains adopts a gauche conformation with respect to the methylene unit bonded to the nitrogen atom. Above 335 K, the methyl group is in an anti conformation and exhibits dynamic disorder. The gauche→anti conformational rearrangement triggers the spin transition of the π dimers and is responsible for the hysteretic behavior of butyl-SBP. Specifically, the onset of the phase transition in the heating mode, and thus, the width of the hysteresis loop, are governed by the high energy cost and strong structural cooperative effects associated with this conformational change. Our results show that coupling a spin switch with a conformational switch in a molecular crystal provides a promising strategy in the design of new bistable materials.

Summary (2 min read)

Introduction

  • Therefore, the studies aimed at elucidating the origin of these barriers and at establishing the role of cooperative effects have the potential to offer most valuable hints on how to devise new bistable materials with improved properties.
  • Below the spin transition temperature, the structures of the πdimers are governed by the potential energy surface (PES) of the ground singlet state (1Ag state), whose minimum structure features a partial localization of the unpaired electrons of each SBP radical in the superimposed phenalenyl (sup-PLY) rings, that is, on the phenalenyl (PLY) units directly involved in the π-dimer .

1) Phase transition of butyl-SBP: a spin transition coupled with a conformational

  • The optimized structures of the LT and HT polymorphs were obtained by means of variable-cell geometry relaxations, in which the atomic positions and the lattice parameters are optimized simultaneously.
  • A constant number of plane waves imply no Pulay stress but a decreasing precision of the calculation as the volume of the cell increases.
  • The large cutoff employed in these calculations ensures that the artifacts arising from this change of precision are negligible.
  • The starting atomic positions and initial lattice parameters for the relaxation of the LS(gau) and HS (anti) polymorphs were taken from the X-ray resolved structures of the LT and HT phases of 2 at 100 and 360 K, respectively.
  • The optimizations of the isolated π-dimers of 2 (carried out with the goal of evaluating the gas-phase ΔEadia values) were also done with plane wave pseudopotential calculations using Vanderbilt ultrasoft pseudopotentials.

3) Driving forces of the phase transition of butyl-SBP. Order-disorder transition

  • The vibrational entropy of the different polymorphs and the isolated π-dimers was evaluated after computing the vibrational frequencies of these systems in the harmonic approximation.
  • The vibrational frequencies in the condensed phase were calculated by means of a finite-difference normal-mode analysis of the optimized structures.
  • It thus follows that the computational strategy has been properly set up.
  • All dynamic simulations were performed in the canonical ensemble using   23   the Nosé-Hoover chain thermostats100 in order to control the kinetic energy of the nuclei and the fictitious kinetic energy of the orbitals.
  • In the simulations of the LT phase, the electronic structure of the π-dimers was that corresponding to their singlet ground state.

4) Origin of the hysteresis and the coupling between the spin transition and the

  • Conformational change in the phase transition of butyl-SBP For the LS(gau) polymorph, in turn, five calculations were performed along the same rotation coordinate between the -107° and 0° values of the θ dihedral angle.
  • To study the elementary steps of the LS(gau) à LS(anti) phase transition, the intermediate states connecting these two polymorphs (3gauche-1anti, 2gauche-2anti and 1gauche-3anti) were obtained by means of variable-cell geometry relaxations, in which the atomic positions and the lattice parameters are optimized simultaneously.
  • Cell parameters of the reported LT-340 and HT-340 X-ray crystal structures of 2. Table S3.
  • Cell parameters of the LT-0 minimum energy structure of butyl-SBP and of the LT crystallographic structures resolved at 100 and 340 K.

Acknowledgments

  • 83 The ΔEadia value between both gauche-IN LS and HS minima is ca. 1 kcal/mol larger than the ΔEadia value between anti polymorphs .
  • Therefore, the large increase in vibrational entropy associated with the conformational switch explains why the system undergo first the conformational switch even if the energy gap that is cleared in this transition is larger than that of the spin switch.

Did you find this useful? Give us your feedback

Figures (11)

Content maybe subject to copyright    Report

!
1!
The origin of bistability in the butyl-substituted spiro-
biphenalenyl-based neutral radical material
!
Maria Fumanal
, Juan J. Novoa, Jordi Ribas-Arino*
Departament de Química Física and IQTCUB, Facultat de Química, Universitat
de Barcelona, Av. Diagonal 645, 08028-Barcelona (Spain)
* jordi.ribas.jr@gmail.com, j.ribas@ub.edu
Present address: Laboratoire de Chimie Quantique, Institut de Chimie UMR7177
CNRS-Université de Strasbourg, 1 Rue Blaise Pascal BP 296/R8, F-67007 Strasbourg,
France
!
!

!
2!
!
Abstract
One of the most remarkable bistable materials so far reported is made of π-dimers of a
butyl-substituted spiro-biphenalenyl boron radical (butyl-SBP). The phase transition of
this material, which is accompanied by changes in its optical, conductive and magnetic
properties, occurs with a hysteretic loop 25-K wide and is centered at 335 K. Here, we
present a computational study aimed at deciphering the origin of this hysteresis. We
show that the phase transition of butyl-SBP consists of a spin transition of their
constituent π-dimers coupled with an order-disorder transition involving the butyl
chains linked to the N atoms of the superimposed phenalenyl rings of the π-dimer.
Below 335 K, the terminal methyl group of the butyl chains adopts a gauche
conformation with respect to the methylene unit bonded to the N atom. Above 335 K,
the methyl group is in an anti conformation and exhibits dynamic disorder. The gauche
! anti conformational rearrangement triggers the spin transition of the π-dimers and is
responsible for the hysteretic behavior of butyl-SBP. Specifically, the onset of the
phase transition in the heating mode and, thus, the width of the hysteresis loop, are
governed by the high energy cost and the strong structural cooperative effects
associated with this conformational change. Our results show that coupling a spin
switch with a conformational switch in a molecular crystal provides a promising strategy
in the design of new bistable materials.
!

!
3!
!
Introduction
Bistability is an intriguing phenomenon exhibited by a few materials that present two
stable phases that can both exist within a given range of temperatures. Molecule-
based bistable materials have been the subject of intense research during the last
years because they hold great promise for application in sensors, displays and
switching devices.
1,2,3 ,4 ,5
The numerous examples of molecular bistable materials
include: materials based on transition metal complexes undergoing spin
transitions
6,7,8,9,10,11,12,13,14
, organic spin-transition materials
15,16,17,18,19,20,21,22
, compounds
whose phase transition is induced by a charge transfer between an electron-donor and
an electron-acceptor
23, 24,25 ,26 ,27
, compounds featuring charge-transfer-induced spin
transitions
28 , 29 , 30
, inorganic-organic hybrid frameworks undergoing phase
transitions
31,32
, molecular crystals whose phase transitions are triggered by changes in
the orientation of molecules
33
. The transition temperature and the hysteresis loop width
of a bistable material are crucial parameters in determining whether its bistability can
be harnessed in technological applications. These two parameters, in turn, depend on
the intermolecular interactions within the crystal and on the energy barriers associated
with the lattice reorganization upon phase transition. For most of the bistable
compounds reported so far, very little is known about either the origin of the energy
barriers associated with their phase transitions (i.e, whether the energy barrier of the
overall phase transition is dominated by a single molecular rearrangement or whether
the barrier is the result of the contributions of different reorganization events) nor the
role of structural cooperativity in promoting such phase transitions. It is clear that the
lack of this sort of information poses a major obstacle for the rational design of new
derivatives of a given bistable parent compound with the goal of fine tuning its
transition temperature and its hysteresis loop width. Therefore, the studies aimed at
elucidating the origin of these barriers and at establishing the role of cooperative
effects have the potential to offer most valuable hints on how to devise new bistable
materials with improved properties. Here, on the basis of a computational study, we
disclose the origin of the hysteretic phase transition of a phenalenyl-based butyl-
substituted neutral radical, which is one of the most prominent compounds within the
family of bistable materials.
Phenalenyl (PLY) is an odd-alternant hydrocarbon neutral radical arising from a
triangular fusion of three benzene rings. This open-shell molecule has emerged in the
past years as one of the most versatile building blocks for functional molecular devices

!
4!
and materials.
16,34,35,36,37,38,39,40
The numerous spiro-biphenalenyl (SBP) boron radicals
reported by Haddon and coworkers constitute a very important class of PLY
derivatives.
41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57
SBPs present two nearly perpendicular
phenalenyl units connected through a boron spiro-linkage. The N- and O-functionalized
SBPs (ie, SBPs in which each phenalenyl unit is bonded to the central boron atom via
an oxygen and a nitrogen atom) exhibit diverse packing motifs in the solid state, and
hence different physical properties, depending on the substituents attached to the
nitrogen atom. Ethyl (1) and butyl-substituted (2) SBPs (see Figure 1) present a crystal
structure containing π -dimers as the basic building block (see Figure 2 and Figure S1).
These two compounds undergo a phase transition that is accompanied by a change in
their optical, conductive and magnetic properties.
16,42
The phase transition of ethyl-SBP
is reversible and occurs at about 140 K, while that of butyl-SBP occurs with an
hysteretic loop 25-K wide and is centered at a much higher temperature (~ 335 K). At
this point, it is worth mentioning that butyl-SBP is one of the few multifunctional bistable
materials that switch the response in multiple physical channels upon phase
transition.
25,30,32,26
Besides, the volume of the crystals of butyl-SBP significantly change
upon phase transition; specifically, a notable expansion of the crystal is observed when
the system switches from its low-temperature (LT) phase to its high-temperature (HT)
phase.
58
This volume change in response to external stimuli is currently a sought-after
phenomenon in the context of new functional materials due to its potential applicability
to microscale or nanoscale actuators.
33
The experimental
58,59
and theoretical studies
60,61,62,63,64
conducted over the last years on
ethyl- and butyl-SBP have culminated in a clear understanding of their electronic
structure and the different magnetic and conducting properties of their phases. Upon
phase transition in the heating mode, the constituent π-dimers of these materials
undergo a spin transition from a closed-shell diamagnetic singlet state to an open-shell
paramagnetic state. Below the spin transition temperature, the structures of the π-
dimers are governed by the potential energy surface (PES) of the ground singlet state
(
1
A
g
state), whose minimum structure features a partial localization of the unpaired
electrons of each SBP radical in the superimposed phenalenyl (sup-PLY) rings, that is,
on the phenalenyl (PLY) units directly involved in the π-dimer (see Figure 2a). The
strong coupling between the SBP unpaired electrons in this configuration leads to a
magnetically silent state, and, thus, to a diamagnetic LT phase. Above the spin
transition temperature, the π-dimers adopt a configuration characterized by a
localization of the SBP unpaired electrons in the nonsuperimposed phenalenyl (non-
PLY) units, that is, on the PLYs not directly involved in the π-dimer (see Figure 2b),

!
5!
which leads to a paramagnetic phase. This configuration is exclusively governed by the
PES of the ground triplet state (
3
A
u
state) because the corresponding open-shell singlet
does not feature any minimum in that region of the PES even if it lies slightly below in
energy than the triplet state. In a recent article
64
, we have shown that the high-spin
(HS) state is energetically competitive with the low-spin (LS) state because the
electrostatic component of the interaction energy between SBP radicals in the π-
dimers is more attractive in the high-temperature
3
A
u
state than in the low-temperature
1
A
g
state. This electrostatic stabilization of the high-temperature
3
A
u
state was ascribed
to the zwitterionic nature of the SBP moieties, in particular, to the interaction between
the positively-charged superimposed PLYs in the triplet state (Figure 2b) and the
negatively-charged spiro-linkages with the central boron atom. These electrostatic
interactions also explain why the unpaired electrons prefer to localize on the
nonsuperimposed PLYs in the high-temperature triplet state.
64
Despite the current good understanding of the electronic structure of the π-dimers of
ethyl- and butyl-SBP and several theoretical studies on other phenalenyl-based
systems
65,66,67,68,69,70,71,72,73,74,75,76,77,78
, there are two crucial questions concerning the
phase transitions of ethyl- and butyl-SBP that remain unsettled, namely: i) why is the
transition temperature of butyl-SBP so much higher than that of ethyl-SBP?, and ii) why
does butyl-SBP display an hysteretic phase transition, in contrast with ethyl-SBP,
which features a smooth phase transition? A meticulous study carried out by Haddon
and coworkers in Ref. 58 on numerous crystal structures of butyl-SBP at different
temperatures led to the suggestion that the HT phase is the thermodynamically stable
phase within the bistability region, while the existence of the LT phase within the
hysteretic loop was rationalized on the basis of the large energy barrier that the system
needs to overcome when switching from LT to HT. Even if this barrier was estimated to
be larger than 24 kcal/mol, the specific molecular rearrangements responsible for that
barrier were not identified. In the computational study herein presented, not only do we
provide a rationale for the higher spin-transition temperature of butyl-SBP but also
disclose the hitherto elusive origin of its hysteresis loop. In particular, our study reveals
that the bistability arises from a very simple molecular rearrangement, namely, a
conformational rearrangement of the butyl groups attached to the SBP radicals.

Citations
More filters
Journal ArticleDOI
TL;DR: Based on the design of electronic-spin structure of polycyclic carbon-centered π-radicals, the authors realized a peculiarly stable neutral π radical without bulky substituent groups, 4,8,12-trioxotriangulene (TOT).
Abstract: To stabilize organic neutral radicals, which are usually very unstable chemical species in air atmosphere, “steric protection” is the most general and indispensable method. Based on the design of electronic-spin structure of polycyclic carbon-centered π-radicals, we have for the first time realized a peculiarly stable neutral π-radical without bulky substituent groups, 4,8,12-trioxotriangulene (TOT), whose decomposition point is higher than 240 °C in the solid state under air. This remarkably high air-stability as a neutral radical is achieved by spin-delocalization originating from the symmetric and expanded π-electronic structure of TOT. The oxo-functionalities also highly contribute to the high stability through electronic-spin modulation, where the largest electronic spin density located at the central carbon atom further decreases the spin densities of the peripheral carbon atoms. In the solution state, TOT is in the equilibrium between the monomer and highly symmetric π-dimer, as stabilized by the f...

44 citations

Journal ArticleDOI
TL;DR: Crystals of the heterocyclic radical naphtho-1,3,2-dithiazolyl NDTA display magnetic bistability with a well-defined hysteretic phase transition at Tc↓ = 128( 2) K and Tc↑ = 188(2) K.
Abstract: Crystals of the heterocyclic radical naphtho-1,3,2-dithiazolyl NDTA display magnetic bistability with a well-defined hysteretic phase transition at Tc↓ = 128(2) K and Tc↑ = 188(2) K. The magnetic signature arises from a radical/dimer interconversion involving one of the two independent π-radicals in the P1 unit cell. Variable temperature X-ray crystallography has established that while all the radicals in HT-NDTA serve as paramagnetic (S = 1/2) centers, half of the radicals in LT-NDTA form closed-shell N–N σ-bonded dimers (S = 0) and half retain their S = 1/2 spin state. The wide window of bistability (60 K) may be attributed to the large structural changes that accompany the phase transition.

33 citations

Journal ArticleDOI
11 Feb 2021-Chem
TL;DR: In this article, a minireview summarizes the recent progress in the design of single-component radical conductors and their promising applications in organic electronics, including the use of spin-spin interactions among the radicals to enhance the molecular orbital overlap and greatly facilitate carrier transport.

25 citations

Journal ArticleDOI
TL;DR: The present work opens new avenues for the study of cooperativity of SCO systems having a chemically oriented perspective and demonstrates that quantum chemistry calculations can discriminate the shape of a spin transition, while providing insight into the atomistic underlying factors that contribute to its cooperative behavior.
Abstract: Cooperativity is key in defining the shape (i.e., gradual, abrupt, or hysteretic) of thermally driven spin transitions in magnetic switches. Despite its importance, there is very little information on its atomistic origin, which hinders the rational design of materials displaying a bistability region (i.e., hysteresis). In this paper, we investigate the spin transition of two solvatomorphs of [Fe(2-pic)3]Cl2, an Fe(II)-complex displaying thermal spin crossover (SCO) from a low-spin (LS) to a high-spin (HS) state with either gradual or abrupt two-step character. To do it, we apply a novel computational protocol to study the cooperativity of SCO compounds from DFT calculations, which does not rely on a priori assumptions on the studied system. The distinct shape of the spin transition is successfully captured, and the atomistic origin of cooperativity is traced back to geometrical distortions of the Fe–N6 core in case of the solvatomorph exhibiting an abrupt transition. According to our calculations, HS and...

23 citations

Journal ArticleDOI
TL;DR: The spin-spin interactions between unpaired electrons in organic radicals are of utter importance from the viewpoint of molecular magnetism and the development of smart materials as discussed by the authors, and the diamagnetic-to-polarity relationship is of great relevance.
Abstract: Spin–Spin interactions between unpaired electrons in organic radicals are of utter importance from the viewpoint of molecular magnetism and the development of smart materials. The diamagnetic to pa...

11 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, a series of recent experiments in which it has been found that pressure induces changes in charge or spin of iron [i.e., Fe(III) reduces to Fe(II) and in Fe( II) there are spin changes involving either decrease or increase of multiplicity] are analyzed.
Abstract: We analyze a series of recent experiments in which it has been found that pressure induces changes in charge or spin of iron [i.e., Fe(III) reduces to Fe(II) and in Fe(II) there are spin changes involving either decrease or increase of multiplicity]. In addition to considering the volume difference of the two states at zero pressure, we find it important to include effects both of the difference in compressibility of the two states, and the change in compressibility of a given state with pressure. The theory casts the problem in terms of the changes in Coulomb energy, closed shell repulsions, and both covalent bonding energy and crystal field energy accompanying the change in electronic state. In addition, interactions between converted iron atoms are included by a form of mean field theory and the effects are shown to be significant. Not only is the theory discussed analytically, but also a simple graphical solution is shown which makes it possible to examine readily the qualitative effects of the various parameters. Repulsive interactions spread the conversion over a larger pressure range and may thus explain why so many compounds exhibit rather broad transitions. Attractive and repulsive interactions can lead to cooperative effects. They should account for the reversible yet discontinuous jumps in conversion as a function of temperature previously observed in several phenanthroline and dipyridyl compounds. The possibility of hysteresis is also indicated. Major anomalies in the combined temperature and pressure variation of the conversion are accounted for by including the temperature dependence of the free energy of interaction.

456 citations

Journal ArticleDOI
08 Oct 1999-Science
TL;DR: A large first-order magnetic phase transition in an organic radical, 1,3,5-trithia-2,4,6-triazapentalenyl, is described and may have applications in thermal sensors, switching units, and information storage media based on organic radical crystals.
Abstract: A large first-order magnetic phase transition in an organic radical, 1,3,5-trithia-2,4,6-triazapentalenyl, is described. The transition occurs with a wide thermal hysteresis loop over the temperature range 230 to 305 kelvin. The high-temperature phase is paramagnetic, and its structure consists of a uniform one-dimensional stacking of the radical. The low-temperature phase is diamagnetic because of strong dimerization along the stacking direction. The results may have applications in thermal sensors, switching units, and information storage media based on organic radical crystals.

439 citations

Journal ArticleDOI
TL;DR: The three-dimensional polymeric compounds [Fe(pz)M(CN)4]·nH2O (pz = pyrazine; M = Ni(II, Pd(II), and Pt(II)) have been synthesized and characterized and undergo strong cooperative spin transitions, large hysteresis loops, and dramatic color changes upon spin conversion.
Abstract: The three-dimensional polymeric compounds [Fe(pz)M(CN)4]·nH2O (pz = pyrazine; M = Ni(II), Pd(II), and Pt(II)) have been synthesized and characterized. They undergo strong cooperative spin transitions, large hysteresis loops, and dramatic color changes upon spin conversion. The two-dimensional homologues [Fe(py)2M(CN)4] (py = pyridine; M = Ni(II), Pd(II), and Pt(II)) also have been synthesized and characterized. In the latter case cooperativity is smaller than in the tri-dimensional derivatives, and consequently narrower hysteresis loops were observed.

431 citations

Journal ArticleDOI
24 Jan 2013-Nature
TL;DR: The findings suggest the use of chemically amenable phenalenyl-based molecules as a viable and scalable platform for building molecular-scale quantum spin memory and processors for technological development.
Abstract: When molecules of a phenalenyl derivative, which has no net spin, are deposited on a ferromagnet, they develop into a magnetic supramolecular layer with spin-filtering properties; this could be the basis for a new approach to building molecular magnetic devices. Various types of molecular magnets carrying high localized spin have been studied as potential devices for information processing and storage, but it remains a considerable challenge to electronically couple to these spin centres. Moodera et al. have designed a phenalenyl derivative, essentially a graphene fragment, with the potential to act as an interface for the exchange of magnetic spin information in molecular spintronic devices. The graphene fragment has no net spin itself, but when deposited as a layer on a ferromagnet it transforms to produce a supramolecular magnetic film. The resulting nanoscale magnetic molecules, or memory 'bits', can be manipulated by external stimuli, and the resulting device exhibits an unexpectedly large magnetoresistance of 20% near room temperature. The use of molecular spin state as a quantum of information for storage, sensing and computing has generated considerable interest in the context of next-generation data storage and communication devices1,2, opening avenues for developing multifunctional molecular spintronics3. Such ideas have been researched extensively, using single-molecule magnets4,5 and molecules with a metal ion6 or nitrogen vacancy7 as localized spin-carrying centres for storage and for realizing logic operations8. However, the electronic coupling between the spin centres of these molecules is rather weak, which makes construction of quantum memory registers a challenging task9. In this regard, delocalized carbon-based radical species with unpaired spin, such as phenalenyl10, have shown promise. These phenalenyl moieties, which can be regarded as graphene fragments, are formed by the fusion of three benzene rings and belong to the class of open-shell systems. The spin structure of these molecules responds to external stimuli11,12 (such as light, and electric and magnetic fields), which provides novel schemes for performing spin memory and logic operations. Here we construct a molecular device using such molecules as templates to engineer interfacial spin transfer resulting from hybridization and magnetic exchange interaction with the surface of a ferromagnet; the device shows an unexpected interfacial magnetoresistance of more than 20 per cent near room temperature. Moreover, we successfully demonstrate the formation of a nanoscale magnetic molecule with a well-defined magnetic hysteresis on ferromagnetic surfaces. Owing to strong magnetic coupling with the ferromagnet, such independent switching of an adsorbed magnetic molecule has been unsuccessful with single-molecule magnets13. Our findings suggest the use of chemically amenable phenalenyl-based molecules as a viable and scalable platform for building molecular-scale quantum spin memory and processors for technological development.

373 citations