scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Oscillatory effective mass in degenerate narrow-gap semiconductors in a quantizing magnetic field

01 Jun 1981-Applied physics (Springer-Verlag)-Vol. 25, Iss: 2, pp 105-108
TL;DR: In this paper, the effect of a quantizing magnetic field on the effective electron mass in degeneraten-type narrow-gap semiconductors at low temperatures was studied. But the effect was limited to the degenerate non-parabolic bands, where the amplitude of oscillations was significantly influenced by the alloy composition.
Abstract: An attempt is made to study the effect of a quantizing magnetic field on the effective electron mass in degeneraten-type narrow-gap semiconductors at low temperatures. It is found, takingn-Hg1−xCdxTe as an example, that the effective electron mass shows an oscillatory magnetic-field dependence as is expected because of the dependence of the effective mass in degenerate non-parabolic bands on Fermi energy which oscillates with changing magnetic field. The amplitude of oscillations is, however, found to be significantly influenced by the alloy composition whereas the period is found to be independent of the band non-parabolicity, i.e. of the compositional parameter in ternary semiconductors.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a simple theoretical analysis of the effective electron mass (EEM) at the Fermi level for III-V, ternary and quaternary materials, on the basis of a newly formulated electron energy spectra in the presence of light waves whose unperturbed energy band structures are defined by the three-band model of Kane, is presented.
Abstract: We present a simple theoretical analysis of the effective electron mass (EEM) at the Fermi level for III–V, ternary and quaternary materials, on the basis of a newly formulated electron energy spectra in the presence of light waves whose unperturbed energy band structures are defined by the three-band model of Kane The solution of the Boltzmann transport equation on the basis of this newly formulated electron dispersion law will introduce new physical ideas and experimental findings under different external conditions It has been observed that the unperturbed isotropic energy spectrum in the presence of light changes into an anisotropic dispersion relation with the energy-dependent mass anisotropy In the presence of light, the conduction band moves vertically upward and the band gap increases with the intensity and colours of light It has been found, taking n-InAs, n-InSb, n-Hg1−xCdxTe and n-In1−xGaxAsyP1−y lattice matched to InP as examples, that the EEM increases with increasing electron concentration, intensity and wavelength in various manners The strong dependence of the effective momentum mass (EMM) at the Fermi level on both the light intensity and wavelength reflects the direct signature of the light waves which is in contrast with the corresponding bulk specimens of the said materials in the absence of photo-excitation The rate of change is totally band-structure-dependent and is influenced by the presence of the different energy band constants The well known result for the EEM at the Fermi level for degenerate wide gap materials in the absence of light waves has been obtained as a special case of the present analysis under certain limiting conditions, and this compatibility is the indirect test of our generalized formalism

23 citations

Journal ArticleDOI
TL;DR: In this article, the variation de la masse effective in fonction du nombre quantique magnetique for les semiconducteurs paraboliques and non parabolique is analyzed.
Abstract: Analyse de la variation de la masse effective en fonction du nombre quantique magnetique pour les semiconducteurs paraboliques et non paraboliques. Presentation d'un exemple pour le superreseau Ga In PSb/GaAs

18 citations

Journal ArticleDOI
TL;DR: In this article, an attempt is made to study the two dimensional (2D) effective electron mass (EEM) in quantum wells (Qws), inversion layers (ILs) and NIPI superlattices of Kane type semiconductors in the presence of strong external photoexcitation on the basis of a newly formulated electron dispersion laws within the framework of k.p. formalism.

16 citations

References
More filters
Journal ArticleDOI
Evan O. Kane1
TL;DR: The band structure of InSb is calculated using the k ·. p perturbation approach and assuming that the conduction and valence band extrema are at k = 0 as mentioned in this paper.

2,905 citations

Book
06 May 1980
TL;DR: In this paper, the Boltzmann Transport Equation is used to calculate the collision probability of the Sphalerite and the Chalcopyrite structures, and the Brillouin Zone is used for the Wurtzite structure.
Abstract: 1. Introduction.- 1.1 Historical Note.- 1.2 Applications.- 1.3 Transport Coefficients of Interest.- 1.4 Scope of the Book.- 2. Crystal Structure.- 2.1 Zinc-Blende Structure.- 2.2 Wurtzite Structure.- 2.3 Rock-Salt Structure.- 2.4 Chalcopyrite Structure.- 3. Energy Band Structure.- 3.1 Electron Wave Vector and Brillouin Zone.- 3.2 Brillouin Zone for the Sphalerite and Rock-Salt Crystal Structure.- 3.3 Brillouin Zone for the Wurtzite Structure.- 3.4 Brillouin Zone for the Chalcopyrite Structure.- 3.5 E-k Diagrams.- 3.5.1 Energy Bands for the Sphalerite Structure.- 3.5.2 Energy Bands for the Wurtzite Structure.- 3.5.3 Energy Bands for the Rock-Salt Structure.- 3.5.4 Band Structure of Mixed Compounds.- 3.6 Conclusion.- 4. Theory of Efiergy Band Structure.- 4.1 Models of Band Structure.- 4.2 Free-Electron Approximation Model.- 4.3 Tight-Binding Approximation Model.- 4.4 Energy Bands in Semiconductor Super!attices.- 4.5 The k-p Perturbation Method for Derivating E-k Relation.- 4.5.1 Single-Band Perturbation Theory.- 4.5.2 Two-Band Approximation.- 4.5.3 Effect of Spin-Orbit Interaction.- 4.5.4 Nonparabolic Relation for Extrema at Points Other than the r Point.- 4.6 External Effects on Energy Bands.- 4.6.1 Effects of Doping.- 4.6.2 Effects of Large Magnetic Fields.- 5. Electron Statistics.- 5.1 Fermi Energy for Parabolic Bands.- 5.2 Fermi Energy for Nonparabolic Bands.- 5.3 Fermi Energy in the Presence of a Quantising Magnetic Field.- 5.3.1 Density of States.- 5.3.2 Fermi Level.- 5.4 Fermi Energy and Impurity Density.- 5.4.1 General Considerations.- 5.4.2 General Formula.- 5.4.3 Discussion of Parabolic Band.- 5.4.4 Effect of Magnetic Field.- 5.5 Conclusions.- 6. Scattering Theory.- 6.1 Collision Processes.- 6.2 Transition Probability.- 6.3 Matrix Elements.- 6.4 Free-Carrier Screening.- 6.5 Overlap Integrals.- 6.6 Scattering Probability S(k).- 6.6.1 S(k) for Ionised Impurity Scattering.- 6.6.2 S(k) for Piezoelectric Scattering.- 6.6.3 S(k) for Deformation-Potential Acoustic Phonon Scattering.- 6.6.4 S(k) for Polar Optic Phonon Scattering.- 6.6.5 S(k) for Intervalley and Nonpolar Optic Phonon Scattering.- 6.7 Scattering Probabilities for Anisotropic Bands.- 6.7.1 Herring-Vogt Transformation.- 6.7.2 Scattering Integrals.- 6.8 S(k) for Neutral Impurity, Alloy, and Crystal-Defect Scattering.- 6.8.1 Neutral-Impurity Scattering.- 6.8.2 Alloy Scattering.- 6.8.3 Defect Scattering.- 6.9 Conclusions.- 7. The Boltzmann Transport Equation and Its Solution.- 7.1 The Liouville Equation and the Boltzmann Equation.- 7.2 The Boltzmann Transport Equation.- 7.3 The Collision Integral.- 7.4 Linearised Boltzmann Equation.- 7.5 Simplified Form of the Collision Terms.- 7.5.1 Collision Terms for Elastic Scattering.- 7.5.2 Collision Terms for Inelastic Scattering.- 7.6 Solution of the Boltzmann Equation.- 7.6.1 Relaxation-Time Approximation.- 7.6.2 Variational Method.- 7.6.3 Matrix Method.- 7.6.4 Iteration Method.- 7.6.5 Monte Carlo Method.- 7.7 Method of Solution for Anisotropic Coupling Constants and Anisotropic Electron Effective Mass.- 7.7.1 Solution for Elastic Collisions.- 7.7.2 Solution for Randomising Collisions.- 7.7.3 Solution for Nonrandomising Inelastic Collisions.- 7.8 Conclusions.- 8. Low-Field DC Transport Coefficients.- 8.1 Evaluation of Drift Mobility.- 8.1.1 Formulae for Relaxation-Time Approximation.- 8.1.2 Evaluation by the Variational Method.- 8.1.3 Evaluation by Matrix and Iteration Methods.- 8.1.4 Evaluation by the Monte Carlo Method.- 8.2 Drift Mobility for Anisotropic Bands.- 8.2.1 Ellipsoidal Band.- 8.2.2 Warped Band.- 8.3 Galvanomagnetic Transport Coefficients.- 8.3:1 Formulae for Hall Coefficient, Hall Mobility, and Magnetoresistance.- 8.3.2 Reduced Boltzmann Equation for the Galvanomagnetic Coefficients.- 8.3.3 Solution Using the Relaxation-Time Approximation Method.- 8.3.4 A Simple Formula for the Low-Field Hall Mobility.- 8.3.5 Numerical Methods for the Galvanomagnetic Coefficients for Arbitrary Magnetic Fields.- 8.3.6 Evaluation of the Galvanomagnetic Transport Coefficients for Anisotropic Effective Mass.- 8.4 Transport Coefficients for Nonuniform conditions.- 8.4.1 Diffusion.- 8.4.2 Thermal Transport Coefficients.- 8.4.3 Formula for Thermoelectric Power.- 8.4.4 Electronic Thermal Conductivity.- 8.5 Conclusions.- 9. Low-Field AC Transport Coefficients.- 9.1 Classical Theory of AC Transport Coefficients.- 9.1.1 Solution for the Relaxation-Time Approximation.- 9.1.2 Solution for Polar Optic Phonon and Mixed Scattering.- 9.1.3 Solution for Nonparabolic and Anisotropic Bands.- 9.2 AC Galvanomagnetic Coefficients.- 9.3 Cyclotron Resonance and Faraday Rotation.- 9.3.1 Propagation of Electromagnetic Waves in a Semiconductor in the Presence of a Magnetic Field.- 9.3.2 Cyclotron Resonance Effect.- 9.3.3 Faraday Rotation.- 9.4 Free-Carrier Absorption (FCA).- 9.4.1 Classical Theory of FCA.- 9.4.2 Quantum-Mechanical Theory of FCA.- 9.5 Concluding Remarks.- 10. Electron Transport in a Strong Magnetic Field.- 10.1 Scattering Probabilities.- 10.2 Mobility in Strong Magnetic Fields.- 10.3 Electron Mobility in the Extreme Quantum Limit (EQL).- 10.3.1 Electron Mobility for Polar Optic Phonon Scattering in the EQL.- 10.4 Oscillatory Effects in the Magnetoresistance.- 10.4.1 Shubnikov-de Haas Effect.- 10.4.2 Magnetophonon Oscillations.- 10.5 Experimental Results on Magnetophonon Resonance.- 10.6 Conclusions.- 11. Hot-Electron Transport.- 11.1 Phenomenon of Hot Electrons.- 11.2 Experimental Characteristics.- 11.3 Negative Differential Mobility and Electron Transfer Effect.- 11.4 Analytic Theories.- 11.4.1 Differential Equation Method.- 11.4.2 Maxwellian Distribution Function Method.- 11.4.3 Displaced Maxwellian Distribution Function Method.- 11.5 Numerical Methods.- 11.5.1 Iteration Method.- 11.5.2 Monte Carlo Method.- 11.6 Hot-Electron AC Conductivity.- 11.6.1 Phenomenological Theory for Single-Valley Materials.- 11.6.2 Phenomenological Theory for Two-Valley Materials.- 11.6.3 Large-Signal AC Conductivity.- 11.7 Hot-Electron Diffusion.- 11.7.1 Einstein Relation for Hot-Electron Diffusivity.- 11.7.2 Electron Diffusivity in Gallium Arsenide.- 11.7.3 Monte Carlo Calculation of the Diffusion Constant.- 11.8 Conclusion.- 12. Review of Experimental Results.- 12.1 Transport Coefficients of III-V Compounds.- 12.1.1 Indium Antimonide.- 12.1.2 Gallium Arsenide.- 12.1.3 Indium Phosphide.- 12.1.4 Indium Arsenide.- 12.1.5 Indirect-Band-Gap III-V Compounds.- 12.2 II-VI Compounds.- 12.2.1 Cubic Compounds of Zinc and Cadmium.- 12.2.2 Wurtzite Compounds of Zinc and Cadmium.- 12.2.3 Mercury Compounds.- 12.3 IV-VI Compounds.- 12.4 Mixed Compounds.- 12.5 Chalcopyrites.- 12.6 Conclusion.- 13. Conclusions.- 13.1 Problems of Current Interest.- 13.1.1 Heavily Doped Materials.- 13.1.2 Alloy Semiconductors.- 13.1.3 Transport Under Magnetically Quantised Conditions.- 13.1.4 Inversion Layers.- 13.1.5 Superlattices and Heterostructures.- 13.2 Scope of Further Studies.- Appendix A: Table of Fermi Integrals.- Appendix B: Computer Program for the Evaluation of Transport Coefficients by the Iteration Method.- Appendix C: Values of a. and b. for Gaussian Quadrature Integration. 417 Appendix D: Computer Program for the Monte Carlo Calculation of Hot-Electron Conductivity and Diffusivity.- List of Symbols.- References.

716 citations

Journal ArticleDOI
TL;DR: In this article, the effect of nonparabolicity of the conduction band of semiconductors was studied in the framework of the Arora-Peterson density-matrix formalism.
Abstract: The effect of nonparabolicity of the conduction band of $n\ensuremath{-}\mathrm{InSb}$ type semiconductors is studied in the framework of the Arora-Peterson density-matrix formalism. To exhibit clearly the effect of nonparabolicity, only the case of elastic electron-acoustic-phonon scattering is considered. Numerical results are presented both for parabolic and nonparabolic models. The nonparabolicity enhances the magnetoresistance, the effect being larger for larger magnetic fields. The Hall coefficient decreases slightly with the increasing magnetic field.

43 citations

Journal ArticleDOI
TL;DR: In this paper, the Longitudinal magnetoresistance in the Extreme Quantum Limit (kBT) was calculated for a nondegenerate n-type InSb sample at low temperatures when the dominant energy and momentum loss mechanisms are the el-acoustic phonon and the elionized impurity interactions.

36 citations