scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Overexpression of cdk4/cyclin D1, a possible mediator of apoptosis and an indicator of prognosis in human primary lung carcinoma

01 Jul 2004-International Journal of Cancer (Wiley-Blackwell)-Vol. 110, Iss: 4, pp 532-541
TL;DR: Upregulation of cdk4/cyclin D1 may be a primary and critical factor in induction of apoptosis in human lung carcinomas in vivo and inactivation of Rb protein renders cells more prone to apoptosis by abnormal expression of any cell‐cycle protein.
Abstract: The relation between expression of cell cycle–regulator molecules and apoptosis was examined in surgical specimens and cultured human lung carcinoma cell lines. Immunohistochemical analysis for 133 cases revealed 2 types of staining pattern. The first group consisted of 95 cases (71.4%) characterized by apoptotic cells showing intensely positive staining for cdk4 and cyclin D1 but negative for other proteins (type A). In the second group (type B), comprising 38 cases (28.6%), apoptotic cells exhibited intense positive staining for any cyclins and cdks. Most of the latter cases had lost expression of Rb protein. When tumor cells retrieved from paraffin-embedded tissue were examined by flow cytometry, higher proportions of cells expressing only cdk4 or cyclin D1 in type A cases and of cells expressing any cyclin or cdk in type B cases showed a subdiploid DNA content. In survival analysis using the LI of apoptotic cells and cyclin/cdk-positive cells, the high-apoptosis/high-cyclin D1 group showed the poorest prognosis. Furthermore, forced overexpression of only cdk4 or cyclin D1 induced apoptosis in cultured cells with normal Rb protein, whereas overexpression of any cyclin or cdk induced apoptosis in cells defective for Rb protein. In conclusion, upregulation of cdk4/cyclin D1 may be a primary and critical factor in induction of apoptosis in human lung carcinomas in vivo. Moreover, inactivation of Rb protein renders cells more prone to apoptosis by abnormal expression of any cell-cycle protein. © 2004 Wiley-Liss, Inc.
Citations
More filters
Journal ArticleDOI
23 Jan 2015-Cancers
TL;DR: Cyclin-dependent kinases (CDK/Cyclins) form a family of heterodimeric kinases that play central roles in regulation of cell cycle progression, transcription and other major biological processes including neuronal differentiation and metabolism.
Abstract: Cyclin-dependent kinases (CDK/Cyclins) form a family of heterodimeric kinases that play central roles in regulation of cell cycle progression, transcription and other major biological processes including neuronal differentiation and metabolism. Constitutive or deregulated hyperactivity of these kinases due to amplification, overexpression or mutation of cyclins or CDK, contributes to proliferation of cancer cells, and aberrant activity of these kinases has been reported in a wide variety of human cancers. These kinases therefore constitute biomarkers of proliferation and attractive pharmacological targets for development of anticancer therapeutics. The structural features of several of these kinases have been elucidated and their molecular mechanisms of regulation characterized in depth, providing clues for development of drugs and inhibitors to disrupt their function. However, like most other kinases, they constitute a challenging class of therapeutic targets due to their highly conserved structural features and ATP-binding pocket. Notwithstanding, several classes of inhibitors have been discovered from natural sources, and small molecule derivatives have been synthesized through rational, structure-guided approaches or identified in high throughput screens. The larger part of these inhibitors target ATP pockets, but a growing number of peptides targeting protein/protein interfaces are being proposed, and a small number of compounds targeting allosteric sites have been reported.

243 citations


Cites background from "Overexpression of cdk4/cyclin D1, a..."

  • ...CDK4/Cyclin D1 overexpression is an indicator of prognosis in human primary lung carcinoma [167]....

    [...]

Journal ArticleDOI
TL;DR: Owing to their role in cell proliferation, CDKs represent natural targets for anticancer therapies and one of their most common toxicities is myelosuppression with decreased neutrophil production.

171 citations

Journal ArticleDOI
TL;DR: A novel strategy to produce nanoscale exosome-mimics (EMs) in sufficient quantity for gene delivery in cancer both in vitro and in vivo is reported.

158 citations

Journal ArticleDOI
TL;DR: Since D1 imposes chemoresistance on cancer cells, targeting D1 may also be a good strategy for cancer chemotherapy, whereas practicioners should be cautious to downregulate c-myc for chemotherapy, since c-Myc may elicit apoptosis.
Abstract: C-myc is an oncogene that functions both in the stimulation of cell proliferation and in and apoptosis. C-myc elicits its oncogenic activity by causing immortalization, and to a lesser extent the transformation of cells, in addition to several other mechanisms. C-myc may also enhance or reduce the sensitivity of cancer cells to chemotherapy, but how this dual function is controlled is largely unclear. Cyclin D1 (D1) is another oncogene that drives cell cycle progression; it acts as a growth factor sensor to integrate extracellular signals with the cell cycle machinery, though it may also promote apoptosis. C-Myc collaborates with TGFalpha, epidermal growth factor receptor, Ras, PI3K/Akt, and NF-kappaB. in part via coordination in regulation of D1 expression, because D1 is a common downstream effector of these growth pathways. Coordination of c-Myc with D1 or its upstream activators not only accelerates tumor formation, but also may drive tumor progression to a more aggressive phenotype. Because c-Myc may effect immortalization while D1 or its upstream activators elicit transformation, targeting c-myc and D1 may be a good strategy for cancer prevention. Moreover, since D1 imposes chemoresistance on cancer cells, targeting D1 may also be a good strategy for cancer chemotherapy, whereas practicioners should be cautious to downregulate c-myc for chemotherapy, since c-Myc may elicit apoptosis.

109 citations

Journal ArticleDOI
TL;DR: An overview of Cdk functions in driving cell cycle progression and transcriptional regulation, a highlight of the DNA damage checkpoints, and an outline of the most relevant Cdk inhibitors currently in clinical trials with an emphasis on the Cdk inhibitor used for treatment of multiple myeloma are offered.

107 citations

References
More filters
Journal ArticleDOI
05 May 1995-Cell
TL;DR: The main role of pRB is to act as a signal transducer connecting the cell cycle clock with the transcriptional machinery, allowing the clock to control the expression of banks of genes that mediate advance of the cell through a critical phase of its growth cycle.

4,904 citations

Journal ArticleDOI
09 Mar 1995-Nature
TL;DR: The activity of cyclin-dependent kinases is controlled by four highly conserved biochemical mechanisms, forming a web of regulatory pathways unmatched in its elegance and intricacy.
Abstract: As key regulators of the cell cycle, the cyclin-dependent kinases must be tightly regulated by extra- and intracellular signals. The activity of cyclin-dependent kinases is controlled by four highly conserved biochemical mechanisms, forming a web of regulatory pathways unmatched in its elegance and intricacy.

3,279 citations

Journal ArticleDOI
03 Apr 1992-Cell
TL;DR: It is demonstrated that deregulated c-myc expression induces apoptosis in cells growth arrested by a variety of means and at various points in the cell cycle.

3,047 citations

Journal ArticleDOI
06 Sep 2001-Nature
TL;DR: The generation and characterization of a p16Ink4a-specific knockout mouse that retains normal p19Arf function are described, establishing that p 16Ink 4a, along with p19 Arf, functions as a tumour suppressor in mice.
Abstract: The cyclin-dependent kinase inhibitor p16INK4a can induce senescence of human cells, and its loss by deletion, mutation or epigenetic silencing is among the most frequently observed molecular lesions in human cancer. Overlapping reading frames in the INK4A/ARF gene encode p16INK4a and a distinct tumour-suppressor protein, p19ARF (ref. 3). Here we describe the generation and characterization of a p16Ink4a-specific knockout mouse that retains normal p19Arf function. Mice lacking p16Ink4a were born with the expected mendelian distribution and exhibited normal development except for thymic hyperplasia. T cells deficient in p16Ink4a exhibited enhanced mitogenic responsiveness, consistent with the established role of p16Ink4a in constraining cellular proliferation. In contrast to mouse embryo fibroblasts (MEFs) deficient in p19Arf (ref. 4), p16Ink4a-null MEFs possessed normal growth characteristics and remained susceptible to Ras-induced senescence. Compared with wild-type MEFs, p16Ink4a-null MEFs exhibited an increased rate of immortalization, although this rate was less than that observed previously for cells null for Ink4a/Arf, p19Arf or p53 (refs 4, 5). Furthermore, p16Ink4a deficiency was associated with an increased incidence of spontaneous and carcinogen-induced cancers. These data establish that p16Ink4a, along with p19Arf, functions as a tumour suppressor in mice.

796 citations

Journal ArticleDOI
TL;DR: In this paper, E2F-1-mediated apoptosis was suppressed by coexpression of wild-type RB or a transdominant negative mutant species of p53, while co-expression of a naturally occurring loss-of-function RB mutant or wild type p53 did not suppress the induction of apoptosis under these conditions.
Abstract: E2F-1 is a transcription factor suspected of activating genes required for S phase and a known target for the action of RB, the retinoblastoma gene product. Its induction in quiescent fibroblasts led to S-phase entry followed by apoptosis. E2F-1-mediated apoptosis was suppressed by coexpression of wild-type RB or a transdominant negative mutant species of p53. In contrast, coexpression of a naturally occurring loss-of-function RB mutant or wild-type p53 did not suppress the induction of apoptosis under these conditions. Thus, deregulated E2F-1 activity gives rise to proliferative and apoptotic signals. p53 appears to participate in the execution of the latter.

791 citations