scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.).

01 Dec 2013-Plant Cell and Environment (Plant Cell Environ)-Vol. 36, Iss: 12, pp 2207-2218
TL;DR: It is demonstrated that miR319 plays important roles in leaf morphogenesis and cold tolerance in rice and genetically down-regulating the expression of either of the two miR 319-targeted genes in RNA interference plants resulted in enhanced cold tolerance after chilling acclimation.
Abstract: MicroRNA319 (miR319) family is one of the conserved microRNA (miRNA) families among diverse plant species. It has been reported that miR319 regulates plant development in dicotyledons, but little is known at present about its functions in monocotyledons. In rice (Oryza sativa L.), the MIR319 gene family comprises two members, Osa-MIR319a and Osa-MIR319b. Here, we report an expression pattern analysis and a functional characterization of the two Osa-MIR319 genes in rice. We found that overexpressing Osa-MIR319a and Osa-MIR319b in rice both resulted in wider leaf blades. Leaves of osa-miR319 overexpression transgenic plants showed an increased number of longitudinal small veins, which probably accounted for the increased leaf blade width. In addition, we observed that overexpressing osa-miR319 led to enhanced cold tolerance (4 °C) after chilling acclimation (12 °C) in transgenic rice seedlings. Notably, under both 4 and 12 °C low temperatures, Osa-MIR319a and Osa-MIR319b were down-regulated while the expression of miR319-targeted genes was induced. Furthermore, genetically down-regulating the expression of either of the two miR319-targeted genes, OsPCF5 and OsPCF8, in RNA interference (RNAi) plants also resulted in enhanced cold tolerance after chilling acclimation. Our findings in this study demonstrate that miR319 plays important roles in leaf morphogenesis and cold tolerance in rice.
Citations
More filters
01 Jan 2009
TL;DR: In this article, a review outlines the current understanding of miRNA target recognition in animals and discusses the widespread impact of miRNAs on both the expression and evolution of protein-coding genes.
Abstract: MicroRNAs (miRNAs) are endogenous ∼23 nt RNAs that play important gene-regulatory roles in animals and plants by pairing to the mRNAs of protein-coding genes to direct their posttranscriptional repression. This review outlines the current understanding of miRNA target recognition in animals and discusses the widespread impact of miRNAs on both the expression and evolution of protein-coding genes.

646 citations

Journal ArticleDOI
TL;DR: In this paper, the molecular mechanisms underlying the responses of plants to abiotic stresses emphasizes their multilevel nature; multiple processes are involved, including sensing, signalling, transcription, transcript processing, translation and post-translational protein modifications.
Abstract: Plants cannot move, so they must endure abiotic stresses such as drought, salinity and extreme temperatures. These stressors greatly limit the distribution of plants, alter their growth and development, and reduce crop productivity. Recent progress in our understanding of the molecular mechanisms underlying the responses of plants to abiotic stresses emphasizes their multilevel nature; multiple processes are involved, including sensing, signalling, transcription, transcript processing, translation and post-translational protein modifications. This improved knowledge can be used to boost crop productivity and agricultural sustainability through genetic, chemical and microbial approaches.

397 citations

Journal ArticleDOI
TL;DR: More function and expression studies will be necessary in order to elucidate the common miRNA-mediated regulatory mechanisms that underlie tolerance to different abiotic stresses, and the use of artificial miRNAs, as well as overexpression and knockout/down of both mi RNAs and their targets, will be the best techniques for determining the specific roles of individual miRNAAs in response to environmental stresses.
Abstract: MicroRNAs (miRNAs) are an extensive class of endogenous, small RNA molecules that sit at the heart of regulating gene expression in multiple developmental and signalling pathways. Recent studies have shown that abiotic stresses induce aberrant expression of many miRNAs, thus suggesting that miRNAs may be a new target for genetically improving plant tolerance to certain stresses. These studies have also shown that miRNAs respond to environmental stresses in a miRNA-, stress-, tissue-, and genotype-dependent manner. During abiotic stress, miRNAs function by regulating target genes within the miRNA-target gene network and by controlling signalling pathways and root development. Generally speaking, stress-induced miRNAs lead to down-regulation of negative regulators of stress tolerance whereas stress-inhibited miRNAs allow the accumulation and function of positive regulators. Currently, the majority of miRNA-based studies have focused on the identification of miRNAs that are responsive to different stress conditions and analysing their expression profile changes during these treatments. This has predominately been accomplished using deep sequencing technologies and other expression analyses, such as quantitative real-time PCR. In the future, more function and expression studies will be necessary in order to elucidate the common miRNA-mediated regulatory mechanisms that underlie tolerance to different abiotic stresses. The use of artificial miRNAs, as well as overexpression and knockout/down of both miRNAs and their targets, will be the best techniques for determining the specific roles of individual miRNAs in response to environmental stresses.

392 citations


Cites background from "Overexpression of microRNA319 impac..."

  • ...Overexpression of miR319 in transgenic rice was found to enhance rice tolerance to cold stress significantly (Yang et  al., 2013)....

    [...]

Journal ArticleDOI
TL;DR: This review summarizes recent progress in characterizing cold-related genes and the pathways that allow transduction of the cold signal in plants, focusing primarily on studies in Arabidopsis thaliana and rice.
Abstract: To survive under cold temperatures plants must be able to perceive a cold signal and transduce it into downstream components that induce appropriate defense mechanisms. In addition to inducing adaptive defenses, such as the production of osmotic factors to prevent freezing and the reprogramming of transcriptional pathways, cold temperatures induce changes in plant growth and development which can affect the plant life cycle. In this review, we summarize recent progress in characterizing cold-related genes and the pathways that allow transduction of the cold signal in plants, focusing primarily on studies in Arabidopsis thaliana and rice (Oryza sativa). We summarize cold perception and signal transduction from the plasma membrane to the nucleus, which involves cold sensors, calcium signals, calcium-binding proteins, mitogen-activated protein kinase cascades, and the C-repeat binding factor/dehydration-responsive element binding pathways, as well as trehalose metabolism. Finally, we describe the balance between plant organogenesis and cold tolerance mechanisms in rice. This review encapsulates the known cold signaling factors in plants and provides perspectives for ongoing cold signaling research.

282 citations

Journal ArticleDOI
TL;DR: Recent updates on plant miRNAs, their biogenesis and functions, target prediction and identification, computational tools and databases available, and their roles in abiotic stress-responses and adaptive mechanisms in major crop plants are provided.
Abstract: The microRNAs (miRNAs) are small (20-24 nt) sized, non-coding, single stranded riboregulator RNAs abundant in higher organisms. Recent findings have established that plants assign miRNAs as critical post-transcriptional regulators of gene expression in sequence-specific manner to respond to numerous abiotic stresses they face during their growth cycle. These small RNAs regulate gene expression via translational inhibition. Usually, stress induced miRNAs downregulate their target mRNAs, whereas, their downregulation leads to accumulation and function of positive regulators. In the past decade, investigations were mainly aimed to identify plant miRNAs, responsive to individual or multiple environmental factors, profiling their expression patterns and recognizing their roles in stress responses and tolerance. Altered expressions of miRNAs implicated in plant growth and development have been reported in several plant species subjected to abiotic stress conditions such as drought, salinity, extreme temperatures, nutrient deprivation, and heavy metals. These findings indicate that miRNAs may hold the key as potential targets for genetic manipulations to engineer abiotic stress tolerance in crop plants. This review is aimed to provide recent updates on plant miRNAs, their biogenesis and functions, target prediction and identification, computational tools and databases available for plant miRNAs, and their roles in abiotic stress-responses and adaptive mechanisms in major crop plants. Besides, the recent case studies for overexpressing the selected miRNAs for miRNA-mediated enhanced abiotic stress tolerance of transgenic plants have been discussed.

279 citations

References
More filters
Journal ArticleDOI
23 Jan 2004-Cell
TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.

32,946 citations

Journal ArticleDOI
23 Jan 2009-Cell
TL;DR: The current understanding of miRNA target recognition in animals is outlined and the widespread impact of miRNAs on both the expression and evolution of protein-coding genes is discussed.

18,036 citations

Journal ArticleDOI
TL;DR: The overlap of miRNA sequences with annotated transcripts, both protein- and non-coding, are described and graphical views of the locations of a wide range of genomic features in model organisms allow for the first time the prediction of the likely boundaries of many miRNA primary transcripts.
Abstract: miRBase is the central online repository for microRNA (miRNA) nomenclature, sequence data, annotation and target prediction. The current release (10.0) contains 5071 miRNA loci from 58 species, expressing 5922 distinct mature miRNA sequences: a growth of over 2000 sequences in the past 2 years. miRBase provides a range of data to facilitate studies of miRNA genomics: all miRNAs are mapped to their genomic coordinates. Clusters of miRNA sequences in the genome are highlighted, and can be defined and retrieved with any inter-miRNA distance. The overlap of miRNA sequences with annotated transcripts, both protein- and non-coding, are described. Finally, graphical views of the locations of a wide range of genomic features in model organisms allow for the first time the prediction of the likely boundaries of many miRNA primary transcripts. miRBase is available at http://microrna.sanger.ac.uk/.

4,493 citations

Journal ArticleDOI
TL;DR: The first direct evidence that miRNA genes are transcribed by RNA polymerase II (pol II) is presented and the detailed structure of a miRNA gene is described, for the first time, by determining the promoter and the terminator of mir‐23a∼27a‐24‐2.
Abstract: MicroRNAs (miRNAs) constitute a large family of noncoding RNAs that function as guide molecules in diverse gene silencing pathways. Current efforts are focused on the regulatory function of miRNAs, while little is known about how these unusual genes themselves are regulated. Here we present the first direct evidence that miRNA genes are transcribed by RNA polymerase II (pol II). The primary miRNA transcripts (pri‐miRNAs) contain cap structures as well as poly(A) tails, which are the unique properties of class II gene transcripts. The treatment of human cells with α‐amanitin decreased the level of pri‐miRNAs at a concentration that selectively inhibits pol II activity. Furthermore, chromatin immunoprecipitation analyses show that pol II is physically associated with a miRNA promoter. We also describe, for the first time, the detailed structure of a miRNA gene by determining the promoter and the terminator of mir‐23a∼27a∼24‐2 . These data indicate that pol II is the main, if not the only, RNA polymerase for miRNA gene transcription. Our study offers a basis for understanding the structure and regulation of miRNA genes.

4,304 citations

Journal ArticleDOI
TL;DR: A large number of morphologically normal, fertile, transgenic rice plants were obtained by co-cultivation of rice tissues with Agrobacterium tumefaciens, and sequence analysis revealed that the boundaries of the T-DNA in transgenic Rice plants were essentially identical to those intransgenic dicotyledons.
Abstract: Summary A large number of morphologically normal, fertile, transgenic rice plants were obtained by co-cultivation of rice tissues with Agrobacterium tumefaciens The efficiency of transformation was similar to that obtained by the methods used routinely for transformation of dicotyledons with the bacterium Stable integration, expression and inheritance of transgenes were demonstrated by molecular and genetic analysis of transformants in the R0, R1 and R2 generations Sequence analysis revealed that the boundaries of the T-DNA in transgenic rice plants were essentially identical to those in transgenic dicotyledons Calli induced from scutella were very good starting materials A strain of A tumefaciens that carried a so-called ‘super-binary’ vector gave especially high frequencies of transformation of various cultivars of japonica rice that included Koshihikari, which normally shows poor responses in tissue culture

3,475 citations