scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Overview of Full-Dimension MIMO in LTE-Advanced Pro

01 Feb 2017-IEEE Communications Magazine (IEEE)-Vol. 55, Iss: 2, pp 176-184
TL;DR: Key features for FD-MIMO systems are presented, a summary of the major issues for the standardization and practical system design, and performance evaluations for typical FD- MIMO scenarios are presented.
Abstract: Multiple-input multiple-output (MIMO) systems with a large number of base station antennas, often called massive MIMO, have received much attention in academia and industry as a means to improve the spectral efficiency, energy efficiency, and processing complexity of next generation cellular systems. The mobile communication industry has initiated a feasibility study of massive MIMO systems to meet the increasing demand of future wireless systems. Field trials of the proof-of-concept systems have demonstrated the potential gain of the Full-Dimension MIMO (FD-MIMO), an official name for the MIMO enhancement in the 3rd generation partnership project (3GPP). 3GPP initiated standardization activity for the seamless integration of this technology into current 4G LTE systems. In this article, we provide an overview of FD-MIMO systems, with emphasis on the discussion and debate conducted on the standardization process of Release 13. We present key features for FD-MIMO systems, a summary of the major issues for the standardization and practical system design, and performance evaluations for typical FD-MIMO scenarios.
Citations
More filters
Journal ArticleDOI
TL;DR: An overview of 5G research, standardization trials, and deployment challenges is provided, with research test beds delivering promising performance but pre-commercial trials lagging behind the desired 5G targets.
Abstract: There is considerable pressure to define the key requirements of 5G, develop 5G standards, and perform technology trials as quickly as possible. Normally, these activities are best done in series but there is a desire to complete these tasks in parallel so that commercial deployments of 5G can begin by 2020. 5G will not be an incremental improvement over its predecessors; it aims to be a revolutionary leap forward in terms of data rates, latency, massive connectivity, network reliability, and energy efficiency. These capabilities are targeted at realizing high-speed connectivity, the Internet of Things, augmented virtual reality, the tactile internet, and so on. The requirements of 5G are expected to be met by new spectrum in the microwave bands (3.3-4.2 GHz), and utilizing large bandwidths available in mm-wave bands, increasing spatial degrees of freedom via large antenna arrays and 3-D MIMO, network densification, and new waveforms that provide scalability and flexibility to meet the varying demands of 5G services. Unlike the one size fits all 4G core networks, the 5G core network must be flexible and adaptable and is expected to simultaneously provide optimized support for the diverse 5G use case categories. In this paper, we provide an overview of 5G research, standardization trials, and deployment challenges. Due to the enormous scope of 5G systems, it is necessary to provide some direction in a tutorial article, and in this overview, the focus is largely user centric, rather than device centric. In addition to surveying the state of play in the area, we identify leading technologies, evaluating their strengths and weaknesses, and outline the key challenges ahead, with research test beds delivering promising performance but pre-commercial trials lagging behind the desired 5G targets.

1,659 citations


Cites background from "Overview of Full-Dimension MIMO in ..."

  • ...All the analog components (phase shifters, low noise power amplifiers, etc) should be tightly packed behind the antenna elements (see Fig, 3(a) of [149])....

    [...]

Journal ArticleDOI
TL;DR: The suitability of hybrid beamforming methods, both, existing and proposed till first quarter of 2017, are explored, and the exciting future challenges in this domain are identified.
Abstract: The increasing wireless data traffic demands have driven the need to explore suitable spectrum regions for meeting the projected requirements. In the light of this, millimeter wave (mmWave) communication has received considerable attention from the research community. Typically, in fifth generation (5G) wireless networks, mmWave massive multiple-input multiple-output (MIMO) communications is realized by the hybrid transceivers which combine high dimensional analog phase shifters and power amplifiers with lower-dimensional digital signal processing units. This hybrid beamforming design reduces the cost and power consumption which is aligned with an energy-efficient design vision of 5G. In this paper, we track the progress in hybrid beamforming for massive MIMO communications in the context of system models of the hybrid transceivers’ structures, the digital and analog beamforming matrices with the possible antenna configuration scenarios and the hybrid beamforming in heterogeneous wireless networks. We extend the scope of the discussion by including resource management issues in hybrid beamforming. We explore the suitability of hybrid beamforming methods, both, existing and proposed till first quarter of 2017, and identify the exciting future challenges in this domain.

505 citations


Cites background from "Overview of Full-Dimension MIMO in ..."

  • ...systems with the name of full-dimensional MIMO (FDMIMO, 16 antenna ports) in Release 13 for seamless integration with the current 4G LTE system [32]....

    [...]

Journal ArticleDOI
TL;DR: The physical layer issues and enabling technologies including packet and frame structure, scheduling schemes, and reliability improvement techniques, which have been discussed in the 3GPP Release 15 standardization are elaborate.
Abstract: URLLC is a new service category in 5G to accommodate emerging services and applications having stringent latency and reliability requirements. In order to support URLLC, there should be both evolutionary and revolutionary changes in the air interface named 5G NR. In this article, we provide an up-to-date overview of URLLC with an emphasis on the physical layer challenges and solutions in 5G NR downlink. We highlight key requirements of URLLC and then elaborate the physical layer issues and enabling technologies including packet and frame structure, scheduling schemes, and reliability improvement techniques, which have been discussed in the 3GPP Release 15 standardization.

423 citations


Cites background from "Overview of Full-Dimension MIMO in ..."

  • ...Physical layer technologies introduced to this end include high order modulation transmission, carrier aggregation, cell densification via heterogeneous network, and multiple-input multipleoutput (MIMO) transmission....

    [...]

  • ...Technologies under consideration include full-dimension and massive MIMO [5], millimeter-wave communication [6], and spectrally-localized waveforms [7]....

    [...]

Book
31 Jan 2019
TL;DR: Understand the fundamentals of wireless and MIMO communication with this accessible and comprehensive text, which provides a sound treatment of the key concepts underpinning contemporary wireless communication and M IMO, all the way to massive MIMo.
Abstract: Understand the fundamentals of wireless and MIMO communication with this accessible and comprehensive text. Viewing the subject through an information theory lens, but also drawing on other perspectives, it provides a sound treatment of the key concepts underpinning contemporary wireless communication and MIMO, all the way to massive MIMO. Authoritative and insightful, it includes over 330 worked examples and 450 homework problems, with solutions and MATLAB code and data available online. Altogether, this is an excellent resource for instructors and graduate students, as well as an outstanding reference for researchers and practicing engineers.

206 citations

Journal ArticleDOI
TL;DR: A contemporary survey on low-rank matrix completion (LRMC), which classifies the state-of-the-art LRMC techniques into two main categories and then explains each category in detail.
Abstract: As a paradigm to recover unknown entries of a matrix from partial observations, low-rank matrix completion (LRMC) has generated a great deal of interest. Over the years, there have been lots of works on this topic, but it might not be easy to grasp the essential knowledge from these studies. This is mainly because many of these works are highly theoretical or a proposal of new LRMC technique. In this paper, we give a contemporary survey on LRMC. In order to provide a better view, insight, and understanding of potentials and limitations of the LRMC, we present early scattered results in a structured and accessible way. Specifically, we classify the state-of-the-art LRMC techniques into two main categories and then explain each category in detail. We next discuss the issues to be considered when one considers using the LRMC techniques. These include intrinsic properties required for the matrix recovery and how to exploit a special structure in the LRMC design. We also discuss the convolutional neural network (CNN)-based LRMC algorithms exploiting the graph structure of a low-rank matrix. Furthermore, we present the recovery performance and the computational complexity of state-of-the-art LRMC techniques. Our hope is that this paper will serve as a useful guide for practitioners and non-experts to catch the gist of the LRMC.

134 citations


Cites background from "Overview of Full-Dimension MIMO in ..."

  • ...In order to maximize the performance gain of the massive MIMO systems, the channel state information at the transmitter (CSIT) is required [9]....

    [...]

References
More filters
Journal ArticleDOI
Thomas L. Marzetta1
TL;DR: A cellular base station serves a multiplicity of single-antenna terminals over the same time-frequency interval and a complete multi-cellular analysis yields a number of mathematically exact conclusions and points to a desirable direction towards which cellular wireless could evolve.
Abstract: A cellular base station serves a multiplicity of single-antenna terminals over the same time-frequency interval. Time-division duplex operation combined with reverse-link pilots enables the base station to estimate the reciprocal forward- and reverse-link channels. The conjugate-transpose of the channel estimates are used as a linear precoder and combiner respectively on the forward and reverse links. Propagation, unknown to both terminals and base station, comprises fast fading, log-normal shadow fading, and geometric attenuation. In the limit of an infinite number of antennas a complete multi-cellular analysis, which accounts for inter-cellular interference and the overhead and errors associated with channel-state information, yields a number of mathematically exact conclusions and points to a desirable direction towards which cellular wireless could evolve. In particular the effects of uncorrelated noise and fast fading vanish, throughput and the number of terminals are independent of the size of the cells, spectral efficiency is independent of bandwidth, and the required transmitted energy per bit vanishes. The only remaining impairment is inter-cellular interference caused by re-use of the pilot sequences in other cells (pilot contamination) which does not vanish with unlimited number of antennas.

6,248 citations

Book
21 Mar 2011
TL;DR: In this article, the authors focus on LTE with full updates including LTE-Advanced to provide a complete picture of the LTE system, including the physical layer, access procedures, broadcast, relaying, spectrum and RF characteristics, and system performance.
Abstract: Based on the bestseller "3G Evolution - HSPA and LTE for mobile broadband" and reflecting the ongoing success of LTE throughout the world, this book focuses on LTE with full updates including LTE-Advanced to provide a complete picture of the LTE system. Overview and detailed explanations are given for the latest LTE standards for radio interface architecture, the physical layer, access procedures, broadcast, relaying, spectrum and RF characteristics, and system performance. Key technologies presented include multi-carrier transmission, advanced single-carrier transmission, advanced receivers, OFDM, MIMO and adaptive antenna solutions, advanced radio resource management and protocols, and different radio network architectures. Their role and use in the context of mobile broadband access in general is explained. Both a high-level overview and more detailed step-by-step explanations of the LTE/LTE-Advanced implementation are given. An overview of other related systems such as GSM/EDGE, HSPA, CDMA2000, and WIMAX is also provided. This book is a 'must-have' resource for engineers and other professionals in the telecommunications industry, working with cellular or wireless broadband technologies, giving an understanding of how to utilize the new technology in order to stay ahead of the competition. The authors of the book all work at Ericsson Research and have been deeply involved in 3G and 4G development and standardisation since the early days of 3G research. They are leading experts in the field and are today still actively contributing to the standardisation of LTE within 3GPP. Includes full details of the latest additions to the LTE Radio Access standards and technologies up to and including 3GPP Release 10Clear explanations of the role of the underlying technologies for LTE, including OFDM and MIMO Full coverage of LTE-Advanced, including LTE carrier aggregation, extended multi-antenna transmission, relaying functionality and heterogeneous deploymentsLTE radio interface architecture, physical layer, access procedures, MBMS, RF characteristics and system performance covered in detail

1,845 citations

Journal ArticleDOI
TL;DR: A key finding is that the feedback rate per mobile must be increased linearly with the signal-to-noise ratio (SNR) (in decibels) in order to achieve the full multiplexing gain.
Abstract: Multiple transmit antennas in a downlink channel can provide tremendous capacity (i.e., multiplexing) gains, even when receivers have only single antennas. However, receiver and transmitter channel state information is generally required. In this correspondence, a system where each receiver has perfect channel knowledge, but the transmitter only receives quantized information regarding the channel instantiation is analyzed. The well-known zero-forcing transmission technique is considered, and simple expressions for the throughput degradation due to finite-rate feedback are derived. A key finding is that the feedback rate per mobile must be increased linearly with the signal-to-noise ratio (SNR) (in decibels) in order to achieve the full multiplexing gain. This is in sharp contrast to point-to-point multiple-input multiple-output (MIMO) systems, in which it is not necessary to increase the feedback rate as a function of the SNR

1,717 citations


"Overview of Full-Dimension MIMO in ..." refers methods in this paper

  • ...MIMO evaluation: (a) RS evolution in LTE systems, (b) uplink feedback overhead (SNR=10dB [7]), (c) MU-MIMO capacity with considering CSI-RS overhead (ideal CSI and ZFBF MU-precoding with 10 UEs and SNR=10dB)....

    [...]

  • ...• Less uplink feedback overhead: In order to maintain a rate comparable to the case with perfect CSI, feedback bits used for the channel vector quantization should be proportional to NT [7]....

    [...]

Book
05 Apr 2010
TL;DR: In this article, the authors discuss each block of wireless link in detail including coding, modulation and the advanced topics such as multiplexing, mobile communication, software radio, OFDM and MIMO.
Abstract: Beginning with an overview of current scenario in the study of wireless communication systems and the presentation of fundamental concepts, the book gradually discusses each block of wireless link in detail including coding, modulation and the advanced topics such as multiplexing, mobile communication, software radio, OFDM and MIMO. All the chapters start with the simpler topics and gradually build up the advanced concepts through detailed explanations and illustrations. The chapters are extremely student friendly with rich pedagogy including case studies, solved examples, review questions, numerical problems and multiple choice questions to help students revise the concepts learnt through visualization and practice.

1,218 citations

Journal ArticleDOI
TL;DR: This paper proposes designing precoders by maximizing the so-called signal-to-leakage-and-noise ratio (SLNR) for all users simultaneously, and it also avoids noise enhancement.
Abstract: In multiuser MIMO downlink communications, it is necessary to design precoding schemes that are able to suppress co-channel interference. This paper proposes designing precoders by maximizing the so-called signal-to-leakage-and-noise ratio (SLNR) for all users simultaneously. The presentation considers communications with both single- and multi-stream cases, as well as MIMO systems that employ Alamouti coding. The effect of channel estimation errors on system performance is also studied. Compared with zero-forcing solutions, the proposed method does not impose a condition on the relation between the number of transmit and receive antennas, and it also avoids noise enhancement. Simulations illustrate the performance of the scheme

871 citations