scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Overview of Integrative Assessment of Marine Systems: The Ecosystem Approach in Practice

TL;DR: Five existing methods that address the needs of monitoring and assessment of marine ecosystems are reviewed, highlighting their main characteristics and analyzing their commonalities and differences.
Abstract: Traditional and emerging human activities are increasingly putting pressures on marine ecosystems and impacting their ability to sustain ecological and human communities. To evaluate the health status of marine ecosystems we need a science-based, integrated Ecosystem Approach, that incorporates knowledge of ecosystem function and services provided that can be used to track how management decisions change the health of marine ecosystems. Although many methods have been developed to assess the status of single components of the ecosystem, few exist for assessing multiple ecosystem components in a holistic way. To undertake such an integrative assessment, it is necessary to understand the response of marine systems to human pressures. Hence, innovative monitoring is needed to obtain data to determine the health of large marine areas, and in an holistic way. Here we review five existing methods that address both of these needs (monitoring and assessment): the Ecosystem Health Assessment Tool; a method for the Marine Strategy Framework Directive in the Bay of Biscay; the Ocean Health Index; the Marine Biodiversity Assessment Tool; and the Nested Environmental status Assessment Tool. We have highlighted their main characteristics and analyzing their commonalities and differences, in terms of: use of the Ecosystem Approach; inclusion of multiple components in the assessment; use of reference conditions; use of integrative assessments; use of a range of values to capture the status; weighting ecosystem components when integrating; determine the uncertainty; ensure spatial and temporal comparability; use of robust monitoring approaches; and address pressures and impacts. Ultimately, for any ecosystem assessment to be effective it needs to be: transparent and repeatable and, in order to inform marine management, the results should be easy to communicate to wide audiences, including scientists, managers and policymakers.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The potential of eDNA to inform on the breadth of biodiversity present in a tropical marine environment is investigated, and the sensitivity and low cost of e DNA metabarcoding are advocated, urging this approach to be rapidly integrated into biomonitoring programs.
Abstract: Effective marine management requires comprehensive data on the status of marine biodiversity. However, efficient methods that can document biodiversity in our oceans are currently lacking. Environmental DNA (eDNA) sourced from seawater offers a new avenue for investigating the biota in marine ecosystems. Here, we investigated the potential of eDNA to inform on the breadth of biodiversity present in a tropical marine environment. Directly sequencing eDNA from seawater using a shotgun approach resulted in only 0.34% of 22.3 million reads assigning to eukaryotes, highlighting the inefficiency of this method for assessing eukaryotic diversity. In contrast, using ‘tree of life’ (ToL) metabarcoding and 20-fold fewer sequencing reads, we could detect 287 families across the major divisions of eukaryotes. Our data also show that the best performing ‘universal’ PCR assay recovered only 44% of the eukaryotes identified across all assays, highlighting the need for multiple metabarcoding assays to catalogue biodiversity. Lastly, focusing on the fish genus Lethrinus, we recovered intra- and inter-specific haplotypes from seawater samples, illustrating that eDNA can be used to explore diversity beyond taxon identifications. Given the sensitivity and low cost of eDNA metabarcoding we advocate this approach be rapidly integrated into biomonitoring programs.

315 citations

Journal ArticleDOI
01 Apr 1982-Ecology

298 citations

Journal ArticleDOI
TL;DR: This viewpoint advocates that DPSIR should be extended to DAPSI(W)R(M) (pronounced dap-see-worm) in which Drivers of basic human needs require Activities which lead to Pressures, and the unifying framework for integrated marine management is completed by encompassing ecosystem structure and functioning, ecosystem services and societal benefits.

233 citations


Cites background from "Overview of Integrative Assessment ..."

  • ...Holistic management practices are therefore required which encompass the environment, economy and society (de Jonge et al., 2003; Borja et al., 2016a)....

    [...]

  • ...There is now an increasing number of assessment approaches worldwide for themarine environment but againmany of these by necessity assess Activities rather than Pressures (Borja et al., 2016a)....

    [...]

  • ...The essence of integrated marine management is in linking all the relevant aspects, encompassing the natural and social sciences, hence giving and delivering the elements of both the socio-ecological system and the Ecosystem Approach (de Jonge et al., 2012; Burdon, 2016; Borja et al., 2016a)....

    [...]

  • ...It is argued here that in order to fully achieve the Ecosystem Approach inmarinemanagement then an interdisciplinary approach is required which bridges the divide between the natural environment and society (Borja et al., 2016a, 2016b; Burdon, 2016; Turner and Schaafsma, 2015)....

    [...]

Journal ArticleDOI
TL;DR: Estimation of coastal ocean capital, integrated management of land-ocean interaction in the coastal zone, enhancement of integrated global observation system, and coastal ecosystem-based management can play effective roles in promoting sustainable management of coastal marine ecosystems.

187 citations

Journal ArticleDOI
TL;DR: The value of genomic information towards securing the future of seafood does not need to be further demonstrated and immediate efforts are needed to remove structural roadblocks and focus on ways that support integration of genomic-informed methods into management and production practices.
Abstract: Best use of scientific knowledge is required to maintain the fundamental role of seafood in human nutrition. While it is acknowledged that genomic-based methods allow the collection of powerful data, their value to inform fisheries management, aquaculture, and biosecurity applications remains underestimated. We review genomic applications of relevance to the sustainable management of seafood resources, illustrate the benefits of, and identify barriers to their integration. We conclude that the value of genomic information towards securing the future of seafood does not need to be further demonstrated. Instead, we need immediate efforts to remove structural roadblocks and focus on ways that support integration of genomic-informed methods into management and production practices. We propose solutions to pave the way forward.

185 citations


Cites background from "Overview of Integrative Assessment ..."

  • ...Moreover, a science-based integrated ecosystem approach necessitates innovative holistic monitoring to obtain data to determine the health of aquatic ecosystems and adjust management decisions accordingly [17]....

    [...]

  • ...Consequently, and despite the demonstrated ability of genetic data to delineate populations accurately (see section below), management units are predominantly based on administrative units, which are often not closely connected with population biology [8,17]....

    [...]

References
More filters
Journal ArticleDOI
15 May 1997-Nature
TL;DR: In this paper, the authors have estimated the current economic value of 17 ecosystem services for 16 biomes, based on published studies and a few original calculations, for the entire biosphere, the value (most of which is outside the market) is estimated to be in the range of US$16-54 trillion (10^(12)) per year, with an average of US $33 trillion per year.
Abstract: The services of ecological systems and the natural capital stocks that produce them are critical to the functioning of the Earth's life-support system. They contribute to human welfare, both directly and indirectly, and therefore represent part of the total economic value of the planet. We have estimated the current economic value of 17 ecosystem services for 16 biomes, based on published studies and a few original calculations. For the entire biosphere, the value (most of which is outside the market) is estimated to be in the range of US$16-54 trillion (10^(12)) per year, with an average of US$33 trillion per year. Because of the nature of the uncertainties, this must be considered a minimum estimate. Global gross national product total is around US$18 trillion per year.

18,139 citations


"Overview of Integrative Assessment ..." refers background in this paper

  • ...Healthy oceans provide multiple valuable ecosystem services, which in turn produce societal benefits through food provision, raw materials, energy and recreation (Costanza et al., 1997; Barbier et al., 2012; Turner et al., 2014; Turner and Schaafsma, 2015)....

    [...]

Journal ArticleDOI
15 Feb 2008-Science
TL;DR: This article developed an ecosystem-specific, multiscale spatial model to synthesize 17 global data sets of anthropogenic drivers of ecological change for 20 marine ecosystems and found that no area is unaffected by human influence and that a large fraction (41%) is strongly affected by multiple drivers.
Abstract: The management and conservation of the world's oceans require synthesis of spatial data on the distribution and intensity of human activities and the overlap of their impacts on marine ecosystems. We developed an ecosystem-specific, multiscale spatial model to synthesize 17 global data sets of anthropogenic drivers of ecological change for 20 marine ecosystems. Our analysis indicates that no area is unaffected by human influence and that a large fraction (41%) is strongly affected by multiple drivers. However, large areas of relatively little human impact remain, particularly near the poles. The analytical process and resulting maps provide flexible tools for regional and global efforts to allocate conservation resources; to implement ecosystem-based management; and to inform marine spatial planning, education, and basic research.

5,365 citations

Journal ArticleDOI
TL;DR: These three-stressor results suggest that synergies may be quite common in nature where more than two stressors almost always coexist and suggest an immediate need to account for stressor interactions in ecological studies and conservation planning.
Abstract: Humans impact natural systems in a multitude of ways, yet the cumulative effect of multiple stressors on ecological communities remains largely unknown. Here we synthesized 171 studies that manipulated two or more stressors in marine and coastal systems and found that cumulative effects in individual studies were additive (26%), synergistic (36%), and antagonistic (38%). The overall interaction effect across all studies was synergistic, but interaction type varied by response level (community: antagonistic, population: synergistic), trophic level (autotrophs: antagonistic, heterotrophs: synergistic), and specific stressor pair (seven pairs additive, three pairs each synergistic and antagonistic). Addition of a third stressor changed interaction effects significantly in two-thirds of all cases and doubled the number of synergistic interactions. Given that most studies were performed in laboratories where stressor effects can be carefully isolated, these three-stressor results suggest that synergies may be quite common in nature where more than two stressors almost always coexist. While significant gaps exist in multiple stressor research, our results suggest an immediate need to account for stressor interactions in ecological studies and conservation planning.

1,685 citations


"Overview of Integrative Assessment ..." refers background in this paper

  • ...This triggered a series of national and regional studies on the effect of multiple stressors on ecosystem components (Crain et al., 2008; Ban et al., 2010; Coll et al., 2012; Korpinen et al., 2012; Micheli et al., 2013; Marcotte et al., 2015; Piggott et al., 2015; Nõges et al., 2016), with each one…...

    [...]

  • ...Despite the benefits these activities deliver to humans, the resulting pressures, including noise, overfishing, habitat destruction, and pollution, alter marine ecosystems in a combination of synergistic and/or antagonistic ways (Crain et al., 2008; Ban et al., 2010; Piggott et al., 2015)....

    [...]

Journal ArticleDOI
TL;DR: This work calculates and map recent change over 5 years in cumulative impacts to marine ecosystems globally from fishing, climate change, and ocean- and land-based stressors and affirm the importance of addressing climate change to maintain and improve the condition of marine ecosystems.
Abstract: Human pressures on the ocean are thought to be increasing globally, yet we know little about their patterns of cumulative change, which pressures are most responsible for change, and which places are experiencing the greatest increases. Managers and policymakers require such information to make strategic decisions and monitor progress towards management objectives. Here we calculate and map recent change over 5 years in cumulative impacts to marine ecosystems globally from fishing, climate change, and ocean- and land-based stressors. Nearly 66% of the ocean and 77% of national jurisdictions show increased human impact, driven mostly by climate change pressures. Five percent of the ocean is heavily impacted with increasing pressures, requiring management attention. Ten percent has very low impact with decreasing pressures. Our results provide large-scale guidance about where to prioritize management efforts and affirm the importance of addressing climate change to maintain and improve the condition of marine ecosystems.

989 citations


"Overview of Integrative Assessment ..." refers background or methods in this paper

  • ...Because the global assessment has been repeated annually for 4 years (Halpern et al., 2012, 2015b; www.ohi-science.org), emerging trends and patterns in calculated scores are becoming apparent....

    [...]

  • ...To date, 11 assessments have been completed for seven different locations: globally for all coastal nations and territories for each year 2012–2015 (Halpern et al., 2012, 2015b), Brazilian coastal states (Elfes et al., 2014), the U.S. West Coast states and sub-states (Halpern et al., 2014), Fiji…...

    [...]

  • ...Of the 11 completed OHI assessments, four have been independently-led....

    [...]

  • ...It has been adopted also for several of the methods reviewed in this study, for example the OHI (Halpern et al., 2012, 2015b; in this case uses a range from 0 to 100)....

    [...]

  • ...Here we review five existing methods that address both of these needs (monitoring and assessment): the Ecosystem Health Assessment Tool; a method for the Marine Strategy Framework Directive in the Bay of Biscay; the Ocean Health Index (OHI); the Marine Biodiversity Assessment Tool, and the Nested Environmental status Assessment Tool....

    [...]

Related Papers (5)