scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells

01 Sep 2009-Toxicology in Vitro (Toxicol In Vitro)-Vol. 23, Iss: 6, pp 1076-1084
TL;DR: The findings suggest that AgNP cytotoxicity is primarily the result of oxidative stress and is independent of the toxicity of Ag(+) ions.
About: This article is published in Toxicology in Vitro.The article was published on 2009-09-01. It has received 804 citations till now. The article focuses on the topics: Silver nanoparticle & Superoxide dismutase.
Citations
More filters
Journal ArticleDOI
TL;DR: This work suggests that AgNP morphological properties known to affect antimicrobial activity are indirect effectors that primarily influence Ag(+) release, and antibacterial activity could be controlled by modulating Ag(+ release, possibly through manipulation of oxygen availability, particle size, shape, and/or type of coating.
Abstract: For nearly a decade, researchers have debated the mechanisms by which AgNPs exert toxicity to bacteria and other organisms. The most elusive question has been whether the AgNPs exert direct “particle-specific” effects beyond the known antimicrobial activity of released silver ions (Ag+). Here, we infer that Ag+ is the definitive molecular toxicant. We rule out direct particle-specific biological effects by showing the lack of toxicity of AgNPs when synthesized and tested under strictly anaerobic conditions that preclude Ag(0) oxidation and Ag+ release. Furthermore, we demonstrate that the toxicity of various AgNPs (PEG- or PVP- coated, of three different sizes each) accurately follows the dose–response pattern of E. coli exposed to Ag+ (added as AgNO3). Surprisingly, E. coli survival was stimulated by relatively low (sublethal) concentration of all tested AgNPs and AgNO3 (at 3–8 μg/L Ag+, or 12–31% of the minimum lethal concentration (MLC)), suggesting a hormetic response that would be counterproductive t...

1,785 citations

Journal ArticleDOI
TL;DR: This paper summarizes and critically assesses the current studies focusing on adverse effects of Ag NPs on human health and the mechanisms for Ag NP induced toxicity include the effects of this particle on cell membranes, mitochondria and genetic material.

1,118 citations

Journal ArticleDOI
TL;DR: It is believed that silver nanoparticles can be engineered so as to increase their efficacy, stability, specificity, biosafety and biocompatibility, and ascertaining the susceptibility of cytoxicity, genotoxicity, and inflammatory response to human cells upon AgNPs exposure.
Abstract: Multidrug resistance of the pathogenic microorganisms to the antimicrobial drugs has become a major impediment toward successful diagnosis and management of infectious diseases. Recent advancements in nanotechnology-based medicines have opened new horizons for combating multidrug resistance in microorganisms. In particular, the use of silver nanoparticles (AgNPs) as a potent antibacterial agent has received much attention. The most critical physico-chemical parameters that affect the antimicrobial potential of AgNPs include size, shape, surface charge, concentration and colloidal state. AgNPs exhibits their antimicrobial potential through multifaceted mechanisms. AgNPs adhesion to microbial cells, penetration inside the cells, ROS and free radical generation, and modulation of microbial signal transduction pathways have been recognized as the most prominent modes of antimicrobial action. On the other side, AgNPs exposure to human cells induces cytotoxicity, genotoxicity and inflammatory response in human cells in a cell-type dependent manner. This has raised concerns regarding use of AgNPs in therapeutics and drug delivery. We have summarized the emerging endeavors that address current challenges in relation to safe use of AgNPs in therapeutics and drug delivery platforms. Based on research done so far, we believe that AgNPs can be engineered so as to increase their efficacy, stability, specificity, biosafety and biocompatibility. In this regard, three perspectives research directions have been suggested that include 1) synthesizing AgNPs with controlled physico-chemical properties, 2) examining microbial development of resistance towards AgNPs, and 3) ascertaining the susceptibility of cytoxicity, genotoxicity, and inflammatory response to human cells upon AgNPs exposure.

1,112 citations


Cites background from "Oxidative stress-dependent toxicity..."

  • ...AgNPs inside nucleus induce 8-Oxoguanine (8-oxoG) oxidative base damages, strand-breaks and mutations in DNA leading to so called genotoxicity (Ahamed et al., 2008; Foldbjerg et al., 2009; Kim et al., 2009; Hudecová et al., 2012)....

    [...]

Journal ArticleDOI
TL;DR: This overview incorporates a retrospective of previous reviews published from 2007 to 2013 and recent original contributions on the progress of research on antimicrobial mechanisms to summarize the current knowledge in the field of antibacterial activity of silver nanoparticles.

1,055 citations

Journal ArticleDOI
TL;DR: The toxic range of all the three metal-containing NPs to target- and non-target organisms overlaps, indicating that the leaching of biocidal NPs from consumer products should be addressed.
Abstract: Nanoparticles (NPs) of copper oxide (CuO), zinc oxide (ZnO) and especially nanosilver are intentionally used to fight the undesirable growth of bacteria, fungi and algae. Release of these NPs from consumer and household products into waste streams and further into the environment may, however, pose threat to the ‘non-target’ organisms, such as natural microbes and aquatic organisms. This review summarizes the recent research on (eco)toxicity of silver (Ag), CuO and ZnO NPs. Organism-wise it focuses on key test species used for the analysis of ecotoxicological hazard. For comparison, the toxic effects of studied NPs toward mammalian cells in vitro were addressed. Altogether 317 L(E)C50 or minimal inhibitory concentrations (MIC) values were obtained for algae, crustaceans, fish, bacteria, yeast, nematodes, protozoa and mammalian cell lines. As a rule, crustaceans, algae and fish proved most sensitive to the studied NPs. The median L(E)C50 values of Ag NPs, CuO NPs and ZnO NPs (mg/L) were 0.01, 2.1 and 2.3 for crustaceans; 0.36, 2.8 and 0.08 for algae; and 1.36, 100 and 3.0 for fish, respectively. Surprisingly, the NPs were less toxic to bacteria than to aquatic organisms: the median MIC values for bacteria were 7.1, 200 and 500 mg/L for Ag, CuO and ZnO NPs, respectively. In comparison, the respective median L(E)C50 values for mammalian cells were 11.3, 25 and 43 mg/L. Thus, the toxic range of all the three metal-containing NPs to target- and non-target organisms overlaps, indicating that the leaching of biocidal NPs from consumer products should be addressed.

1,029 citations

References
More filters
Journal ArticleDOI
TL;DR: A tetrazolium salt has been used to develop a quantitative colorimetric assay for mammalian cell survival and proliferation and is used to measure proliferative lymphokines, mitogen stimulations and complement-mediated lysis.

50,114 citations

Journal ArticleDOI
03 Feb 2006-Science
TL;DR: The establishment of principles and test procedures to ensure safe manufacture and use of nanomaterials in the marketplace is urgently required and achievable.
Abstract: Nanomaterials are engineered structures with at least one dimension of 100 nanometers or less. These materials are increasingly being used for commercial purposes such as fillers, opacifiers, catalysts, semiconductors, cosmetics, microelectronics, and drug carriers. Materials in this size range may approach the length scale at which some specific physical or chemical interactions with their environment can occur. As a result, their properties differ substantially from those bulk materials of the same composition, allowing them to perform exceptional feats of conductivity, reactivity, and optical sensitivity. Possible undesirable results of these capabilities are harmful interactions with biological systems and the environment, with the potential to generate toxicity. The establishment of principles and test procedures to ensure safe manufacture and use of nanomaterials in the marketplace is urgently required and achievable.

8,323 citations

Journal ArticleDOI
TL;DR: These nontoxic nanomaterials, which can be prepared in a simple and cost-effective manner, may be suitable for the formulation of new types of bactericidal materials.

5,309 citations

Journal ArticleDOI
Vicki L. Colvin1
TL;DR: With the increased presence of nanomaterials in commercial products, a growing public debate is emerging on whether the environmental and social costs of nanotechnology outweigh its many benefits.
Abstract: With the increased presence of nanomaterials in commercial products, a growing public debate is emerging on whether the environmental and social costs of nanotechnology outweigh its many benefits. To date, few studies have investigated the toxicological and environmental effects of direct and indirect exposure to nanomaterials and no clear guidelines exist to quantify these effects.

2,118 citations

Journal ArticleDOI
TL;DR: The microscopic studies demonstrated that nanoparticle-exposed cells at higher doses became abnormal in size, displaying cellular shrinkage, and an acquisition of an irregular shape, which suggested that cytotoxicity of Ag (15, 100 nm) in liver cells is likely to be mediated through oxidative stress.

1,949 citations