scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Oxidative Stress, Prooxidants, and Antioxidants: The Interplay

23 Jan 2014-BioMed Research International (Hindawi Limited)-Vol. 2014, pp 761264-761264
TL;DR: The importance of oxidative stress in the body growth and development as well as proteomic and genomic evidences of its relationship with disease development, incidence of malignancies and autoimmune disorders, increased susceptibility to bacterial, viral, and parasitic diseases are discussed.
Abstract: Oxidative stress is a normal phenomenon in the body. Under normal conditions, the physiologically important intracellular levels of reactive oxygen species (ROS) are maintained at low levels by various enzyme systems participating in the in vivo redox homeostasis. Therefore, oxidative stress can also be viewed as an imbalance between the prooxidants and antioxidants in the body. For the last two decades, oxidative stress has been one of the most burning topics among the biological researchers all over the world. Several reasons can be assigned to justify its importance: knowledge about reactive oxygen and nitrogen species production and metabolism; identification of biomarkers for oxidative damage; evidence relating manifestation of chronic and some acute health problems to oxidative stress; identification of various dietary antioxidants present in plant foods as bioactive molecules; and so on. This review discusses the importance of oxidative stress in the body growth and development as well as proteomic and genomic evidences of its relationship with disease development, incidence of malignancies and autoimmune disorders, increased susceptibility to bacterial, viral, and parasitic diseases, and an interplay with prooxidants and antioxidants for maintaining a sound health, which would be helpful in enhancing the knowledge of any biochemist, pathophysiologist, or medical personnel regarding this important issue.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The aim of this review is to emphasize with current information the importance of antioxidants which play the role in cellular responce against oxidative/nitrosative stress, which would be helpful in enhancing the knowledge of any biochemist, pathophysiologist, or medical personnel regarding this important issue.
Abstract: Remarkable interest has risen in the idea that oxidative/nitrosative stress is mediated in the etiology of numerous human diseases. Oxidative/Nitrosative stress is the result of an disequilibrium in oxidant/antioxidant which reveals from continuous increase of Reactive Oxygen and Reactive Nitrogen Species production. The aim of this review is to emphasize with current information the importance of antioxidants which play the role in cellular responce against oxidative/nitrosative stress, which would be helpful in enhancing the knowledge of any biochemist, pathophysiologist, or medical personnel regarding this important issue. Products of lipid peroxidation have commonly been used as biomarkers of oxidative/nitrosative stress damage. Lipid peroxidation generates a variety of relatively stable decomposition end products, mainly α, β-unsaturated reactive aldehydes, such as malondialdehyde, 4-hydroxy-2-nonenal, 2-propenal (acrolein) and isoprostanes, which can be measured in plasma and urine as an indirect index of oxidative/nitrosative stress. Antioxidants are exogenous or endogenous molecules that mitigate any form of oxidative/nitrosative stress or its consequences. They may act from directly scavenging free radicals to increasing antioxidative defences. Antioxidant deficiencies can develop as a result of decreased antioxidant intake, synthesis of endogenous enzymes or increased antioxidant utilization. Antioxidant supplementation has become an increasingly popular practice to maintain optimal body function. However, antoxidants exhibit pro-oxidant activity depending on the specific set of conditions. Of particular importance are their dosage and redox conditions in the cell.

1,317 citations


Cites background from "Oxidative Stress, Prooxidants, and ..."

  • ...Moreover, α-lipoic acid exerts a protective effect on the kidney of diabetic rats but a prooxidant effect in nondiabetic animals [189]....

    [...]

  • ...The pro-oxidant effects have been attributed to dehydroxylipoic acid (DHLA), the reduced metabolite of α-lipoic acid owing to its ability to reduce iron, initiate reactive sulfurcontaining radicals, and thus damage proteins such as alpha 1-antiproteinase and creatine kinase playing a role in renal homeostasis [189]....

    [...]

  • ...Furthermore, some negative effects of antioxidants when used in dietary supplements (ascorbic acid, flavanoids, carotenoids, α-lipoic acid and synthetic compounds) have came out in the last few decades [189]....

    [...]

Journal ArticleDOI
TL;DR: The different modes of regulation of Nrf2 activity are reviewed and the current knowledge of NRF2-mediated transcriptional control is reviewed to provide insight into mechanisms of disease and instruct new treatment strategies.
Abstract: Significance: Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor that coordinates the basal and stress-inducible activation of a vast array of cytoprotective genes. Unders...

1,114 citations


Cites background from "Oxidative Stress, Prooxidants, and ..."

  • ...At high levels, these toxicants can cause damage to cellular components, including proteins, lipids, and DNA (133)....

    [...]

  • ...In human cells, CDK12 has been identified as an essential regulator for the transcription of various DNA damage response and DNA repair genes, increasing the interest in the development of pharmacological inhibitors of CDK12 to act as sensitizers to chemotherapeutic agents (64, 94)....

    [...]

  • ...BRG1, the central ATPase subunit of the SWI/SNF chromatinremodeling complex, has been shown to interact with NRF2 and to selectively influence the transcription of NRF2 target genes with Z-DNA formation (193)....

    [...]

  • ...Together with histone-modifying enzymes, Nrf2 recruits Mediator, a multi-subunit protein complex that communicates the activation signals from a DNA-bound transcription factor to RNA polymerase II (Pol II) (6, 143)....

    [...]

  • ...Moreover, NRF2 associates with other co-activators of the transcription machinery, such as chromodomain helicase DNA-binding protein 6 (CHD6) (120), receptor-associated co-activator 3 (RAC3) (75), and NAD+-dependent histone deacetylase sirtuin 6 (SIRT6) (128)....

    [...]

Journal ArticleDOI
TL;DR: A need to understand the processes and role of oxidative stress in neurodegenerative diseases is understood, with a focus on the pivotal role played by OS in mitochondrial dysfunction.
Abstract: Oxidative stress is proposed as a regulatory element in ageing and various neurological disorders. The excess of oxidants causes a reduction of antioxidants, which in turn produce an oxidation–reduction imbalance in organisms. Paucity of the antioxidant system generates oxidative-stress, characterized by elevated levels of reactive species (oxygen, hydroxyl free radical, and so on). Mitochondria play a key role in ATP supply to cells via oxidative phosphorylation, as well as synthesis of essential biological molecules. Various redox reactions catalyzed by enzymes take place in the oxidative phosphorylation process. An inefficient oxidative phosphorylation may generate reactive oxygen species (ROS), leading to mitochondrial dysfunction. Mitochondrial redox metabolism, phospholipid metabolism, and proteolytic pathways are found to be the major and potential source of free radicals. A lower concentration of ROS is essential for normal cellular signaling, whereas the higher concentration and long-time exposure of ROS cause damage to cellular macromolecules such as DNA, lipids and proteins, ultimately resulting in necrosis and apoptotic cell death. Normal and proper functioning of the central nervous system (CNS) is entirely dependent on the chemical integrity of brain. It is well established that the brain consumes a large amount of oxygen and is highly rich in lipid content, becoming prone to oxidative stress. A high consumption of oxygen leads to excessive production of ROS. Apart from this, the neuronal membranes are found to be rich in polyunsaturated fatty acids, which are highly susceptible to ROS. Various neurodegenerative diseases such as Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS), among others, can be the result of biochemical alteration (due to oxidative stress) in bimolecular components. There is a need to understand the processes and role of oxidative stress in neurodegenerative diseases. This review is an effort towards improving our understanding of the pivotal role played by OS in neurodegenerative disorders.

920 citations


Cites background from "Oxidative Stress, Prooxidants, and ..."

  • ...Because it is clear that, along with antioxidants, pro-oxidants also play crucial role in oxidative stress and diseases, the awareness around pro-oxidants is equally important to combat OS and neurodegeneration [40,41]....

    [...]

Journal ArticleDOI
Andrea Cossarizza1, Hyun-Dong Chang, Andreas Radbruch, Andreas Acs2  +459 moreInstitutions (160)
TL;DR: These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community providing the theory and key practical aspects offlow cytometry enabling immunologists to avoid the common errors that often undermine immunological data.
Abstract: These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion.

698 citations

Journal ArticleDOI
TL;DR: Observations on ROS ability of inducing cell senescence through novel mechanisms that underpin aging processes are reviewed, with the aim to individuate specific pathways, which might promote healthy lifespan and improve aging.
Abstract: The aging process worsens the human body functions at multiple levels, thus causing its gradual decrease to resist stress, damage, and disease. Besides changes in gene expression and metabolic control, the aging rate has been associated with the production of high levels of Reactive Oxygen Species (ROS) and/or Reactive Nitrosative Species (RNS). Specific increases of ROS level have been demonstrated as potentially critical for induction and maintenance of cell senescence process. Causal connection between ROS, aging, age-related pathologies, and cell senescence is studied intensely. Senescent cells have been proposed as a target for interventions to delay the aging and its related diseases or to improve the diseases treatment. Therapeutic interventions towards senescent cells might allow restoring the health and curing the diseases that share basal processes, rather than curing each disease in separate and symptomatic way. Here, we review observations on ROS ability of inducing cell senescence through novel mechanisms that underpin aging processes. Particular emphasis is addressed to the novel mechanisms of ROS involvement in epigenetic regulation of cell senescence and aging, with the aim to individuate specific pathways, which might promote healthy lifespan and improve aging.

613 citations


Cites background from "Oxidative Stress, Prooxidants, and ..."

  • ...Increased expression of catalase and peroxiredoxin 1 molecules are considered as OS markers [20–22]....

    [...]

References
More filters
Book
13 Jun 1985
TL;DR: 1. Oxygen is a toxic gas - an introduction to oxygen toxicity and reactive species, and the chemistry of free radicals and related 'reactive species'
Abstract: 1. Oxygen is a toxic gas - an introductionto oxygen toxicity and reactive species 2. The chemistry of free radicals and related 'reactive species' 3. Antioxidant defences Endogenous and Diet Derived 4. Cellular responses to oxidative stress: adaptation, damage, repair, senescence and death 5. Measurement of reactive species 6. Reactive species can pose special problems needing special solutions. Some examples. 7. Reactive species can be useful some more examples 8. Reactive species can be poisonous: their role in toxicology 9. Reactive species and disease: fact, fiction or filibuster? 10. Ageing, nutrition, disease, and therapy: A role for antioxidants?

21,528 citations

Journal ArticleDOI
TL;DR: It is proposed that the autoxidation of epinephrine proceeds by at least two distinct pathways, only one of which is a free radical chain reaction involving O2- and hence inhibitable by superoxide dismutase.

7,872 citations

Journal ArticleDOI
TL;DR: This review examines the evidence for involvement of the oxidative stress in the carcinogenesis process and the role of enzymatic and non-enzymatic antioxidants in the process of carcinogenesis as well as the antioxidant interactions with various regulatory factors.

5,937 citations


"Oxidative Stress, Prooxidants, and ..." refers background in this paper

  • ...This is the result of the electron transport chain located in themitochondrialmembrane,which is essential for the energy production inside the cell [56, 57]....

    [...]

Journal ArticleDOI
10 Nov 1993-JAMA
TL;DR: The most prominent contributors to mortality in the United States in 1990 were tobacco, diet and activity patterns, alcohol, microbial agents, toxic agents, firearms, sexual behavior, motor vehicles, and illicit use of drugs.
Abstract: Objective. —To identify and quantify the major external (nongenetic) factors that contribute to death in the United States. Data Sources. —Articles published between 1977 and 1993 were identified through MEDLINE searches, reference citations, and expert consultation. Government reports and compilations of vital statistics and surveillance data were also obtained. Study Selection. —Sources selected were those that were often cited and those that indicated a quantitative assessment of the relative contributions of various factors to mortality and morbidity. Data Extraction. —Data used were those for which specific methodological assumptions were stated. A table quantifying the contributions of leading factors was constructed using actual counts, generally accepted estimates, and calculated estimates that were developed by summing various individual estimates and correcting to avoid double counting. For the factors of greatest complexity and uncertainty (diet and activity patterns and toxic agents), a conservative approach was taken by choosing the lower boundaries of the various estimates. Data Synthesis. —The most prominent contributors to mortality in the United States in 1990 were tobacco (an estimated 400000 deaths), diet and activity patterns (300 000), alcohol (100 000), microbial agents (90 000), toxic agents (60 000), firearms (35 000), sexual behavior (30 000), motor vehicles (25 000), and illicit use of drugs (20 000). Socioeconomic status and access to medical care are also important contributors, but difficult to quantify independent of the other factors cited. Because the studies reviewed used different approaches to derive estimates, the stated numbers should be viewed as first approximations. Conclusions. —Approximately half of all deaths that occurred in 1990 could be attributed to the factors identified. Although no attempt was made to further quantify the impact of these factors on morbidity and quality of life, the public health burden they impose is considerable and offers guidance for shaping health policy priorities. (JAMA. 1993;270:2207-2212)

5,468 citations


"Oxidative Stress, Prooxidants, and ..." refers background in this paper

  • ...Regular chewing of tobacco alongwith inadequate diet is the most prominent finding to mortality due to lung cancer in USA [3]....

    [...]