scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances

12 Jun 2012-Advanced Materials (WILEY‐VCH Verlag)-Vol. 24, Iss: 22, pp 2945-2986
TL;DR: The recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed andp-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed.
Abstract: Transparent electronics is today one of the most advanced topics for a wide range of device applications. The key components are wide bandgap semiconductors, where oxides of different origins play an important role, not only as passive component but also as active component, similar to what is observed in conventional semiconductors like silicon. Transparent electronics has gained special attention during the last few years and is today established as one of the most promising technologies for leading the next generation of flat panel display due to its excellent electronic performance. In this paper the recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed and p-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed. After a short introduction where the main advantages of these semiconductors are presented, as well as the industry expectations, the beautiful history of TFTs is revisited, including the main landmarks in the last 80 years, finishing by referring to some papers that have played an important role in shaping transparent electronics. Then, an overview is presented of state of the art n-type TFTs processed by physical vapour deposition methods, and finally one of the most exciting, promising, and low cost but powerful technologies is discussed: solution-processed oxide TFTs. Moreover, a more detailed focus analysis will be given concerning p-type oxide TFTs, mainly centred on two of the most promising semiconductor candidates: copper oxide and tin oxide. The most recent data related to the production of complementary metal oxide semiconductor (CMOS) devices based on n- and p-type oxide TFT is also be presented. The last topic of this review is devoted to some emerging applications, finalizing with the main conclusions. Related work that originated at CENIMAT|I3N during the last six years is included in more detail, which has led to the fabrication of high performance n- and p-type oxide transistors as well as the fabrication of CMOS devices with and on paper.
Citations
More filters
Journal ArticleDOI
Dedong Han1, Yi Zhang1, Yingying Cong1, Wen Yu1, Xing Zhang1, Yi Wang1 
TL;DR: The effect of O2/Ar gas flow ratio during channel deposition on the electrical properties of TZO TFTs was investigated, and it was found that the O 2/ArGas flow ratio have a great influence on the Electrical properties.
Abstract: In this work, we have successfully fabricated bottom gate fully transparent tin-doped zinc oxide thin film transistors (TZO TFTs) fabricated on flexible plastic substrate at low temperature by RF magnetron sputtering. The effect of O2/Ar gas flow ratio during channel deposition on the electrical properties of TZO TFTs was investigated, and we found that the O2/Ar gas flow ratio have a great influence on the electrical properties. TZO TFTs on flexible substrate has very nice electrical characteristics with a low off-state current (Ioff) of 3 pA, a high on/off current ratio of 2 × 107, a high saturation mobility (μsat) of 66.7 cm2/V•s, a steep subthreshold slope (SS) of 333 mV/decade and a threshold voltage (Vth) of 1.2 V. Root-Mean-Square (RMS) roughness of TZO thin film is about 0.52 nm. The transmittance of TZO thin film is about 98%. These results highlight that the excellent device performance can be realized in TZO film and TZO TFT can be a promising candidate for flexible displays.

22 citations

Journal ArticleDOI
TL;DR: An advanced compact and analytical drain current model for the amorphous gallium indium zinc oxide (GIZO) thin film transistors (TFTs) is proposed and proves the symmetry of source and drain electrodes and extends the range of applications to both signs of VDS.
Abstract: An advanced compact and analytical drain current model for the amorphous gallium indium zinc oxide (GIZO) thin film transistors (TFTs) is proposed. Its output saturation behavior is improved by introducing a new asymptotic function. All model parameters were extracted using an adapted version of the Universal Method and Extraction Procedure (UMEM) applied for the first time for GIZO devices in a simple and direct form. We demonstrate the correct behavior of the model for negative VDS, a necessity for a complete compact model. In this way we prove the symmetry of source and drain electrodes and extend the range of applications to both signs of VDS. The model, in Verilog-A code, is implemented in Electronic Design Automation (EDA) tools, such as Smart Spice, and compared with measurements of TFTs. It describes accurately the experimental characteristics in the whole range of GIZO TFTs operation, making the model suitable for the design of circuits using these types of devices.

22 citations

Journal ArticleDOI
TL;DR: In this paper, a hybrid multilayer channel composed of alternating ultra-thin layers of indium oxide, zinc oxide nanoparticles, ozone-treated polystyrene and a compact zinc oxide layer, all solution-processed in ambient atmosphere, was used to create TFTs with remarkably high electron mobility (50 cm$^{2}$/Vs) and record operational stability.
Abstract: Metal oxide thin-film transistors are fast becoming a ubiquitous technology for application in driving backplanes of organic light-emitting diode displays. Currently all commercial products rely on metal oxides processed via physical vapor deposition methods. Transition to simpler, higher throughput manufacturing methods such as solution-based processes, are currently been explored as cost-effective alternatives. However, developing printable oxide transistors with high carrier mobility and bias-stable operation has proved challenging. Here we show that hybrid multilayer channels composed of alternating ultra-thin layers ($\leq$4 nm) of indium oxide, zinc oxide nanoparticles, ozone-treated polystyrene and a compact zinc oxide layer, all solution-processed in ambient atmosphere, can be used to create TFTs with remarkably high electron mobility (50 cm$^{2}$/Vs) and record operational stability. Insertion of the ozone-treated polystyrene interlayer is shown to reduce the concentration of electron traps at the metal oxide surfaces and heterointerfaces. The resulting transistors exhibit dramatically enhanced bias stability over 24 h continuous operation and while subjected to large electric field flux density (2.1$\times$10$^{-6}$ C/cm$^{2}$) with no adverse effects on the electron mobility. Density functional theory calculations identify the origin of this enhanced stability as the passivation of the oxygen vacancy-related gap states due to interaction between ozonolyzed styrene moieties and the oxides. Our results sets new design guidelines for bias-stress resilient metal oxide transistors.

21 citations

Journal ArticleDOI
TL;DR: In this article, self-assembled monolayers (SAMs) have been used to improve both the positive and negative bias-stress stability of amorphous indium gallium zinc oxide (IGZO) bottom gate thin film transistors (TFTs).
Abstract: Self-assembled monolayers (SAMs) have been used to improve both the positive and negative bias-stress stability of amorphous indium gallium zinc oxide (IGZO) bottom gate thin film transistors (TFTs). N-hexylphosphonic acid (HPA) and fluorinated hexylphosphonic acid (FPA) SAMs adsorbed on IGZO back channel surfaces were shown to significantly reduce bias stress turn-on voltage shifts compared to IGZO back channel surfaces with no SAMs. FPA was found to have a lower surface energy and lower packing density than HPA, as well as lower bias stress turn-on voltage shifts. The improved stability of IGZO TFTs with SAMs can be primarily attributed to a reduction in molecular adsorption of contaminants on the IGZO back channel surface and minimal trapping states present with phosphonic acid binding to the IGZO surface.

21 citations

Journal ArticleDOI
TL;DR: In this article, two types of anomalies are discussed: the shift in threshold voltage (VTH) in a direction opposite to the applied bias stress, and highly dependent on gate dielectric material.
Abstract: Oxide semiconductor thin-film transistors can show anomalous behavior under bias stress. Two types of anomalies are discussed in this paper. The first is the shift in threshold voltage (VTH) in a direction opposite to the applied bias stress, and highly dependent on gate dielectric material. We attribute this to charge trapping/detrapping and charge migration within the gate dielectric. We emphasize the fundamental difference between trapping/detrapping events occurring at the semiconductor/dielectric interface and those occurring at gate/dielectric interface, and show that charge migration is essential to explain the first anomaly. We model charge migration in terms of the non-instantaneous polarization density. The second type of anomaly is negative VTH shift under high positive bias stress, with logarithmic evolution in time. This can be argued as electron-donating reactions involving H2O molecules or derived species, with a reaction rate exponentially accelerated by positive gate bias and exponentially decreased by the number of reactions already occurred.

21 citations

References
More filters
Journal ArticleDOI
25 Nov 2004-Nature
TL;DR: A novel semiconducting material is proposed—namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)—for the active channel in transparent thin-film transistors (TTFTs), which are fabricated on polyethylene terephthalate sheets and exhibit saturation mobilities and device characteristics are stable during repetitive bending of the TTFT sheet.
Abstract: Transparent electronic devices formed on flexible substrates are expected to meet emerging technological demands where silicon-based electronics cannot provide a solution. Examples of active flexible applications include paper displays and wearable computers1. So far, mainly flexible devices based on hydrogenated amorphous silicon (a-Si:H)2,3,4,5 and organic semiconductors2,6,7,8,9,10 have been investigated. However, the performance of these devices has been insufficient for use as transistors in practical computers and current-driven organic light-emitting diode displays. Fabricating high-performance devices is challenging, owing to a trade-off between processing temperature and device performance. Here, we propose to solve this problem by using a novel semiconducting material—namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)—for the active channel in transparent thin-film transistors (TTFTs). The a-IGZO is deposited on polyethylene terephthalate at room temperature and exhibits Hall effect mobilities exceeding 10 cm2 V-1 s-1, which is an order of magnitude larger than for hydrogenated amorphous silicon. TTFTs fabricated on polyethylene terephthalate sheets exhibit saturation mobilities of 6–9 cm2 V-1 s-1, and device characteristics are stable during repetitive bending of the TTFT sheet.

7,301 citations

Book
04 Jul 1990
TL;DR: In this article, the authors present a characterization of the resistivity of a two-point-versus-four-point probe in terms of the number of contacts and the amount of contacts in the probe.
Abstract: Preface to Third Edition. 1 Resistivity. 1.1 Introduction. 1.2 Two-Point Versus Four-Point Probe. 1.3 Wafer Mapping. 1.4 Resistivity Profiling. 1.5 Contactless Methods. 1.6 Conductivity Type. 1.7 Strengths and Weaknesses. Appendix 1.1 Resistivity as a Function of Doping Density. Appendix 1.2 Intrinsic Carrier Density. References. Problems. Review Questions. 2 Carrier and Doping Density. 2.1 Introduction. 2.2 Capacitance-Voltage (C-V). 2.3 Current-Voltage (I-V). 2.4 Measurement Errors and Precautions. 2.5 Hall Effect. 2.6 Optical Techniques. 2.7 Secondary Ion Mass Spectrometry (SIMS). 2.8 Rutherford Backscattering (RBS). 2.9 Lateral Profiling. 2.10 Strengths and Weaknesses. Appendix 2.1 Parallel or Series Connection? Appendix 2.2 Circuit Conversion. References. Problems. Review Questions. 3 Contact Resistance and Schottky Barriers. 3.1 Introduction. 3.2 Metal-Semiconductor Contacts. 3.3 Contact Resistance. 3.4 Measurement Techniques. 3.5 Schottky Barrier Height. 3.6 Comparison of Methods. 3.7 Strengths and Weaknesses. Appendix 3.1 Effect of Parasitic Resistance. Appendix 3.2 Alloys for Contacts to Semiconductors. References. Problems. Review Questions. 4 Series Resistance, Channel Length and Width, and Threshold Voltage. 4.1 Introduction. 4.2 PN Junction Diodes. 4.3 Schottky Barrier Diodes. 4.4 Solar Cells. 4.5 Bipolar Junction Transistors. 4.6 MOSFETS. 4.7 MESFETS and MODFETS. 4.8 Threshold Voltage. 4.9 Pseudo MOSFET. 4.10 Strengths and Weaknesses. Appendix 4.1 Schottky Diode Current-Voltage Equation. References. Problems. Review Questions. 5 Defects. 5.1 Introduction. 5.2 Generation-Recombination Statistics. 5.3 Capacitance Measurements. 5.4 Current Measurements. 5.5 Charge Measurements. 5.6 Deep-Level Transient Spectroscopy (DLTS). 5.7 Thermally Stimulated Capacitance and Current. 5.8 Positron Annihilation Spectroscopy (PAS). 5.9 Strengths and Weaknesses. Appendix 5.1 Activation Energy and Capture Cross-Section. Appendix 5.2 Time Constant Extraction. Appendix 5.3 Si and GaAs Data. References. Problems. Review Questions. 6 Oxide and Interface Trapped Charges, Oxide Thickness. 6.1 Introduction. 6.2 Fixed, Oxide Trapped, and Mobile Oxide Charge. 6.3 Interface Trapped Charge. 6.4 Oxide Thickness. 6.5 Strengths and Weaknesses. Appendix 6.1 Capacitance Measurement Techniques. Appendix 6.2 Effect of Chuck Capacitance and Leakage Current. References. Problems. Review Questions. 7 Carrier Lifetimes. 7.1 Introduction. 7.2 Recombination Lifetime/Surface Recombination Velocity. 7.3 Generation Lifetime/Surface Generation Velocity. 7.4 Recombination Lifetime-Optical Measurements. 7.5 Recombination Lifetime-Electrical Measurements. 7.6 Generation Lifetime-Electrical Measurements. 7.7 Strengths and Weaknesses. Appendix 7.1 Optical Excitation. Appendix 7.2 Electrical Excitation. References. Problems. Review Questions. 8 Mobility. 8.1 Introduction. 8.2 Conductivity Mobility. 8.3 Hall Effect and Mobility. 8.4 Magnetoresistance Mobility. 8.5 Time-of-Flight Drift Mobility. 8.6 MOSFET Mobility. 8.7 Contactless Mobility. 8.8 Strengths and Weaknesses. Appendix 8.1 Semiconductor Bulk Mobilities. Appendix 8.2 Semiconductor Surface Mobilities. Appendix 8.3 Effect of Channel Frequency Response. Appendix 8.4 Effect of Interface Trapped Charge. References. Problems. Review Questions. 9 Charge-based and Probe Characterization. 9.1 Introduction. 9.2 Background. 9.3 Surface Charging. 9.4 The Kelvin Probe. 9.5 Applications. 9.6 Scanning Probe Microscopy (SPM). 9.7 Strengths and Weaknesses. References. Problems. Review Questions. 10 Optical Characterization. 10.1 Introduction. 10.2 Optical Microscopy. 10.3 Ellipsometry. 10.4 Transmission. 10.5 Reflection. 10.6 Light Scattering. 10.7 Modulation Spectroscopy. 10.8 Line Width. 10.9 Photoluminescence (PL). 10.10 Raman Spectroscopy. 10.11 Strengths and Weaknesses. Appendix 10.1 Transmission Equations. Appendix 10.2 Absorption Coefficients and Refractive Indices for Selected Semiconductors. References. Problems. Review Questions. 11 Chemical and Physical Characterization. 11.1 Introduction. 11.2 Electron Beam Techniques. 11.3 Ion Beam Techniques. 11.4 X-Ray and Gamma-Ray Techniques. 11.5 Strengths and Weaknesses. Appendix 11.1 Selected Features of Some Analytical Techniques. References. Problems. Review Questions. 12 Reliability and Failure Analysis. 12.1 Introduction. 12.2 Failure Times and Acceleration Factors. 12.3 Distribution Functions. 12.4 Reliability Concerns. 12.5 Failure Analysis Characterization Techniques. 12.6 Strengths and Weaknesses. Appendix 12.1 Gate Currents. References. Problems. Review Questions. Appendix 1 List of Symbols. Appendix 2 Abbreviations and Acronyms. Index.

6,573 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the literature in the area of alternate gate dielectrics is given, based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward success.
Abstract: Many materials systems are currently under consideration as potential replacements for SiO2 as the gate dielectric material for sub-0.1 μm complementary metal–oxide–semiconductor (CMOS) technology. A systematic consideration of the required properties of gate dielectrics indicates that the key guidelines for selecting an alternative gate dielectric are (a) permittivity, band gap, and band alignment to silicon, (b) thermodynamic stability, (c) film morphology, (d) interface quality, (e) compatibility with the current or expected materials to be used in processing for CMOS devices, (f) process compatibility, and (g) reliability. Many dielectrics appear favorable in some of these areas, but very few materials are promising with respect to all of these guidelines. A review of current work and literature in the area of alternate gate dielectrics is given. Based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward success...

5,711 citations

Journal ArticleDOI
TL;DR: In this article, the authors present new insight into conduction mechanisms and performance characteristics, as well as opportunities for modeling properties of organic thin-film transistors (OTFTs) and discuss progress in the growing field of n-type OTFTs.
Abstract: Organic thin-film transistors (OTFTs) have lived to see great improvements in recent years. This review presents new insight into conduction mechanisms and performance characteristics, as well as opportunities for modeling properties of OTFTs. The shifted focus in research from novel chemical structures to fabrication technologies that optimize morphology and structural order is underscored by chapters on vacuum-deposited and solution-processed organic semiconducting films. Finally, progress in the growing field of the n-type OTFTs is discussed in ample detail. The Figure, showing a pentacene film edge on SiO2, illustrates the morphology issue.

4,804 citations

Journal ArticleDOI
TL;DR: An outlook is presented on what will be required to drive this young photovoltaic technology towards the next major milestone, a 10% power conversion efficiency, considered by many to represent the efficiency at which OPV can be adopted in wide-spread applications.
Abstract: Solution-processed bulk-heterojunction solar cells have gained serious attention during the last few years and are becoming established as one of the future photovoltaic technologies for low-cost power production. This article reviews the highlights of the last few years, and summarizes today's state-of-the-art performance. An outlook is given on relevant future materials and technologies that have the potential to guide this young photovoltaic technology towards the magic 10% regime. A cost model supplements the technical discussions, with practical aspects any photovoltaic technology needs to fulfil, and answers to the question as to whether low module costs can compensate lower lifetimes and performances.

3,084 citations