scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances

12 Jun 2012-Advanced Materials (WILEY‐VCH Verlag)-Vol. 24, Iss: 22, pp 2945-2986
TL;DR: The recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed andp-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed.
Abstract: Transparent electronics is today one of the most advanced topics for a wide range of device applications. The key components are wide bandgap semiconductors, where oxides of different origins play an important role, not only as passive component but also as active component, similar to what is observed in conventional semiconductors like silicon. Transparent electronics has gained special attention during the last few years and is today established as one of the most promising technologies for leading the next generation of flat panel display due to its excellent electronic performance. In this paper the recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed and p-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed. After a short introduction where the main advantages of these semiconductors are presented, as well as the industry expectations, the beautiful history of TFTs is revisited, including the main landmarks in the last 80 years, finishing by referring to some papers that have played an important role in shaping transparent electronics. Then, an overview is presented of state of the art n-type TFTs processed by physical vapour deposition methods, and finally one of the most exciting, promising, and low cost but powerful technologies is discussed: solution-processed oxide TFTs. Moreover, a more detailed focus analysis will be given concerning p-type oxide TFTs, mainly centred on two of the most promising semiconductor candidates: copper oxide and tin oxide. The most recent data related to the production of complementary metal oxide semiconductor (CMOS) devices based on n- and p-type oxide TFT is also be presented. The last topic of this review is devoted to some emerging applications, finalizing with the main conclusions. Related work that originated at CENIMAT|I3N during the last six years is included in more detail, which has led to the fabrication of high performance n- and p-type oxide transistors as well as the fabrication of CMOS devices with and on paper.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the important parameters for such control can be identified using photoelectron spectroscopy with in situ sample preparation, and the parameters influencing doping, work functions, ionization potentials, and surface band bending as well as energy band alignment at interfaces are described and discussed.
Abstract: The various applications of transparent conducting oxides (TCO), e.g., as electrodes in flat panel displays and solar cells or as low-emissivity coatings have stimulated extensive research on their fabrication and properties. Recent experimental and theoretical studies of defect properties have considerably improved the understanding of the limitations of the electrical conductivity of both n- and p-type transparent conductors and of the structural and electronic surface properties of the most important TCO materials. Development of emerging and future applications in the area of transparent thin film electronics with oxide semiconductors as well as the improvement of existing applications require a detailed control of the Fermi level position in the bulk and at surfaces and interfaces of polycrystalline and amorphous TCO materials. This feature article describes how the important parameters for such control can be identified using photoelectron spectroscopy with in situ sample preparation. The parameters influencing doping, work functions, ionization potentials, and surface band bending as well as energy band alignment at interfaces are described and discussed providing a fundamental understanding of important material properties for tailoring TCOs in electronic devices.

124 citations

Journal ArticleDOI
TL;DR: Transparent complementary inverters composed of p-type CuI and n-type indium gallium zinc oxide TFTs are demonstrated with clear inverting characteristics and voltage gain over 4.2 V by using a high permittivity ZrO2 dielectric layer replacing traditional SiO2.
Abstract: Here, room-temperature solution-processed inorganic p-type copper iodide (CuI) thin-film transistors (TFTs) are reported for the first time. The spin-coated 5 nm thick CuI film has average hole mobility (µFE ) of 0.44 cm2 V-1 s-1 and on/off current ratio of 5 × 102 . Furthermore, µFE increases to 1.93 cm2 V-1 s-1 and operating voltage significantly reduces from 60 to 5 V by using a high permittivity ZrO2 dielectric layer replacing traditional SiO2 . Transparent complementary inverters composed of p-type CuI and n-type indium gallium zinc oxide TFTs are demonstrated with clear inverting characteristics and voltage gain over 4. These outcomes provide effective approaches for solution-processed inorganic p-type semiconductor inks and related electronics.

123 citations

Journal ArticleDOI
TL;DR: A simple method is reported for enhancing the hole mobility in a wide range of organic semiconductors, including small‐molecules, polymers, and small-molecule:polymer blends, with the latter systems exhibiting the highest mobility.
Abstract: Improving the charge carrier mobility of solution-processable organic semiconductors is critical for the development of advanced organic thin-film transistors and their application in the emerging sector of printed electronics. Here, a simple method is reported for enhancing the hole mobility in a wide range of organic semiconductors, including small-molecules, polymers, and small-molecule:polymer blends, with the latter systems exhibiting the highest mobility. The method is simple and relies on admixing of the molecular Lewis acid B(C6F5)3 in the semiconductor formulation prior to solution deposition. Two prototypical semiconductors where B(C6F5)3 is shown to have a remarkable impact are the blends of 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene:poly(triarylamine) (diF-TESADT:PTAA) and 2,7-dioctyl[1]-benzothieno[3,2-b][1]benzothiophene:poly(indacenodithiophene-co-benzothiadiazole) (C8-BTBT:C16-IDTBT), for which hole mobilities of 8 and 11 cm2 V-1 s-1, respectively, are obtained. Doping of the 6,13-bis(triisopropylsilylethynyl)pentacene:PTAA blend with B(C6F5)3 is also shown to increase the maximum hole mobility to 3.7 cm2 V-1 s-1. Analysis of the single and multicomponent materials reveals that B(C6F5)3 plays a dual role, first acting as an efficient p-dopant, and secondly as a microstructure modifier. Semiconductors that undergo simultaneous p-doping and dopant-induced long-range crystallization are found to consistently outperform transistors based on the pristine materials. Our work underscores Lewis acid doping as a generic strategy towards high performance printed organic microelectronics.

123 citations

Journal ArticleDOI
TL;DR: In this paper, a PbS QD/indium gallium zinc oxide (InGaZnO, IGZO) metal oxide semiconductor hybrid phototransistors with a photodetection capability between 700 and 1400 nm was presented.
Abstract: Lead sulfide (PbS) quantum dots (QDs) have great potential in optoelectronic applications because of their desirable characteristics as a light absorber for near-infrared (NIR) photodetection. However, most PbS-based NIR photodetectors are two-terminal devices, which require an integrated pixel circuit to be practical photosensors. Here we report on PbS QD/indium gallium zinc oxide (InGaZnO, IGZO) metal oxide semiconductor hybrid phototransistors with a photodetection capability between 700 and 1400 nm, a range that neither conventional Si nor InGaAs photodetectors can cover. The new hybrid phototransistor exhibits excellent photoresponsivity of over 106 A W−1 and a specific detectivity in the order of 1013 Jones for NIR (1000 nm) light. Furthermore, we demonstrate an NIR (1300 nm) imager using photogating inverter pixels based on PbS/IGZO phototransistors at an imaging frequency of 1 Hz with a high output voltage photogain of ~4.9 V (~99%). To the best of our knowledge, this report demonstrates the first QD/metal oxide hybrid phototransistor-based flat panel NIR imager. Our hybrid approach using QD/metal oxide paves the way for the development of gate-tunable and highly sensitive flat panel NIR sensors/imagers that can be easily integrated. A hybrid near-infrared photoinverter based on lead sulphide quantum (PbS) dots and InGaZnO that exhibits a high photogain has been made. PbS quantum dots have promising properties for near-infrared detection, but two-terminal devices based on them require an integrated pixel circuit. Now, Do Kyung Hwang at Korea University of Science and Technology and co-workers have demonstrated a hybrid near-infrared detector that employs PbS quantum dots to sensitize InGaZnO. The detector covers a wavelength range of 700–1,400 nanometres, which is not covered by conventional photodetectors. It also exhibits an excellent photoresponsivity of over 106 amperes per watt. The researchers consider that this approach will open up the way to develop highly sensitive, flat-panel near-infrared sensors and imagers that are both gate tunable and readily integrable. We propose hybrid approach of two classes of PbS QD as NIR light absorber and IGZO as the photogenerated charges acceptor/transport semiconductor to create phototransistor for near infrared (NIR) detection/imaging. Such hybrid phototransistor shows photodetection capability between 700 and 1400 nm. We demonstrate a NIR (1300 nm) imager using photogating inverter pixel based on PbS/IGZO hybrid phototransistor.

122 citations

Journal ArticleDOI
TL;DR: This tutorial review analyzes a number of strategies based on wet chemical methods for inducing the crystallization of metal oxide thin films at low temperatures and illustrates the most recent achievements in this field.
Abstract: Over the last few years the efforts devoted to the research on low-temperature processing of metal oxide thin films have increased notably. This has enabled the direct integration of metal oxide layers (amorphous semiconductors) on low-melting-point polymeric substrates for flexible electronic systems, which adds to the economic and environmental benefits of the use of these processes with reduced energy consumption. More challenging is the preparation of crystalline complex oxide films at temperatures compatible with their direct integration in flexible devices. However, the usually high crystallization temperatures (>600 °C) impede the development of devices that take full advantage of the large variety of oxide functionalities available. This tutorial review analyzes a number of strategies based on wet chemical methods for inducing the crystallization of metal oxide thin films at low temperatures. The key mechanisms are explained in relation to the specific step of the fabrication process reached in an earlier stage: the formation of a defect-free, highly densified amorphous metal–oxygen network or the actual crystallization of the metal oxide. The role of photochemistry, where light can be used as a complementary energy source to induce crystallization, is particularly highlighted. This requires the synthesis of novel photosensitive solutions (modified metal alkoxides, charge-transfer metal complexes or structurally designed molecular compounds) and a precise control over the reactions promoted by UV irradiation (photochemical cleavage, ozonolysis, condensation or photocatalysis). Relevant examples derived from the integration of crystalline metal oxide thin films on flexible substrates (≤350 °C) illustrate the most recent achievements in this field.

121 citations

References
More filters
Journal ArticleDOI
25 Nov 2004-Nature
TL;DR: A novel semiconducting material is proposed—namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)—for the active channel in transparent thin-film transistors (TTFTs), which are fabricated on polyethylene terephthalate sheets and exhibit saturation mobilities and device characteristics are stable during repetitive bending of the TTFT sheet.
Abstract: Transparent electronic devices formed on flexible substrates are expected to meet emerging technological demands where silicon-based electronics cannot provide a solution. Examples of active flexible applications include paper displays and wearable computers1. So far, mainly flexible devices based on hydrogenated amorphous silicon (a-Si:H)2,3,4,5 and organic semiconductors2,6,7,8,9,10 have been investigated. However, the performance of these devices has been insufficient for use as transistors in practical computers and current-driven organic light-emitting diode displays. Fabricating high-performance devices is challenging, owing to a trade-off between processing temperature and device performance. Here, we propose to solve this problem by using a novel semiconducting material—namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)—for the active channel in transparent thin-film transistors (TTFTs). The a-IGZO is deposited on polyethylene terephthalate at room temperature and exhibits Hall effect mobilities exceeding 10 cm2 V-1 s-1, which is an order of magnitude larger than for hydrogenated amorphous silicon. TTFTs fabricated on polyethylene terephthalate sheets exhibit saturation mobilities of 6–9 cm2 V-1 s-1, and device characteristics are stable during repetitive bending of the TTFT sheet.

7,301 citations

Book
04 Jul 1990
TL;DR: In this article, the authors present a characterization of the resistivity of a two-point-versus-four-point probe in terms of the number of contacts and the amount of contacts in the probe.
Abstract: Preface to Third Edition. 1 Resistivity. 1.1 Introduction. 1.2 Two-Point Versus Four-Point Probe. 1.3 Wafer Mapping. 1.4 Resistivity Profiling. 1.5 Contactless Methods. 1.6 Conductivity Type. 1.7 Strengths and Weaknesses. Appendix 1.1 Resistivity as a Function of Doping Density. Appendix 1.2 Intrinsic Carrier Density. References. Problems. Review Questions. 2 Carrier and Doping Density. 2.1 Introduction. 2.2 Capacitance-Voltage (C-V). 2.3 Current-Voltage (I-V). 2.4 Measurement Errors and Precautions. 2.5 Hall Effect. 2.6 Optical Techniques. 2.7 Secondary Ion Mass Spectrometry (SIMS). 2.8 Rutherford Backscattering (RBS). 2.9 Lateral Profiling. 2.10 Strengths and Weaknesses. Appendix 2.1 Parallel or Series Connection? Appendix 2.2 Circuit Conversion. References. Problems. Review Questions. 3 Contact Resistance and Schottky Barriers. 3.1 Introduction. 3.2 Metal-Semiconductor Contacts. 3.3 Contact Resistance. 3.4 Measurement Techniques. 3.5 Schottky Barrier Height. 3.6 Comparison of Methods. 3.7 Strengths and Weaknesses. Appendix 3.1 Effect of Parasitic Resistance. Appendix 3.2 Alloys for Contacts to Semiconductors. References. Problems. Review Questions. 4 Series Resistance, Channel Length and Width, and Threshold Voltage. 4.1 Introduction. 4.2 PN Junction Diodes. 4.3 Schottky Barrier Diodes. 4.4 Solar Cells. 4.5 Bipolar Junction Transistors. 4.6 MOSFETS. 4.7 MESFETS and MODFETS. 4.8 Threshold Voltage. 4.9 Pseudo MOSFET. 4.10 Strengths and Weaknesses. Appendix 4.1 Schottky Diode Current-Voltage Equation. References. Problems. Review Questions. 5 Defects. 5.1 Introduction. 5.2 Generation-Recombination Statistics. 5.3 Capacitance Measurements. 5.4 Current Measurements. 5.5 Charge Measurements. 5.6 Deep-Level Transient Spectroscopy (DLTS). 5.7 Thermally Stimulated Capacitance and Current. 5.8 Positron Annihilation Spectroscopy (PAS). 5.9 Strengths and Weaknesses. Appendix 5.1 Activation Energy and Capture Cross-Section. Appendix 5.2 Time Constant Extraction. Appendix 5.3 Si and GaAs Data. References. Problems. Review Questions. 6 Oxide and Interface Trapped Charges, Oxide Thickness. 6.1 Introduction. 6.2 Fixed, Oxide Trapped, and Mobile Oxide Charge. 6.3 Interface Trapped Charge. 6.4 Oxide Thickness. 6.5 Strengths and Weaknesses. Appendix 6.1 Capacitance Measurement Techniques. Appendix 6.2 Effect of Chuck Capacitance and Leakage Current. References. Problems. Review Questions. 7 Carrier Lifetimes. 7.1 Introduction. 7.2 Recombination Lifetime/Surface Recombination Velocity. 7.3 Generation Lifetime/Surface Generation Velocity. 7.4 Recombination Lifetime-Optical Measurements. 7.5 Recombination Lifetime-Electrical Measurements. 7.6 Generation Lifetime-Electrical Measurements. 7.7 Strengths and Weaknesses. Appendix 7.1 Optical Excitation. Appendix 7.2 Electrical Excitation. References. Problems. Review Questions. 8 Mobility. 8.1 Introduction. 8.2 Conductivity Mobility. 8.3 Hall Effect and Mobility. 8.4 Magnetoresistance Mobility. 8.5 Time-of-Flight Drift Mobility. 8.6 MOSFET Mobility. 8.7 Contactless Mobility. 8.8 Strengths and Weaknesses. Appendix 8.1 Semiconductor Bulk Mobilities. Appendix 8.2 Semiconductor Surface Mobilities. Appendix 8.3 Effect of Channel Frequency Response. Appendix 8.4 Effect of Interface Trapped Charge. References. Problems. Review Questions. 9 Charge-based and Probe Characterization. 9.1 Introduction. 9.2 Background. 9.3 Surface Charging. 9.4 The Kelvin Probe. 9.5 Applications. 9.6 Scanning Probe Microscopy (SPM). 9.7 Strengths and Weaknesses. References. Problems. Review Questions. 10 Optical Characterization. 10.1 Introduction. 10.2 Optical Microscopy. 10.3 Ellipsometry. 10.4 Transmission. 10.5 Reflection. 10.6 Light Scattering. 10.7 Modulation Spectroscopy. 10.8 Line Width. 10.9 Photoluminescence (PL). 10.10 Raman Spectroscopy. 10.11 Strengths and Weaknesses. Appendix 10.1 Transmission Equations. Appendix 10.2 Absorption Coefficients and Refractive Indices for Selected Semiconductors. References. Problems. Review Questions. 11 Chemical and Physical Characterization. 11.1 Introduction. 11.2 Electron Beam Techniques. 11.3 Ion Beam Techniques. 11.4 X-Ray and Gamma-Ray Techniques. 11.5 Strengths and Weaknesses. Appendix 11.1 Selected Features of Some Analytical Techniques. References. Problems. Review Questions. 12 Reliability and Failure Analysis. 12.1 Introduction. 12.2 Failure Times and Acceleration Factors. 12.3 Distribution Functions. 12.4 Reliability Concerns. 12.5 Failure Analysis Characterization Techniques. 12.6 Strengths and Weaknesses. Appendix 12.1 Gate Currents. References. Problems. Review Questions. Appendix 1 List of Symbols. Appendix 2 Abbreviations and Acronyms. Index.

6,573 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the literature in the area of alternate gate dielectrics is given, based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward success.
Abstract: Many materials systems are currently under consideration as potential replacements for SiO2 as the gate dielectric material for sub-0.1 μm complementary metal–oxide–semiconductor (CMOS) technology. A systematic consideration of the required properties of gate dielectrics indicates that the key guidelines for selecting an alternative gate dielectric are (a) permittivity, band gap, and band alignment to silicon, (b) thermodynamic stability, (c) film morphology, (d) interface quality, (e) compatibility with the current or expected materials to be used in processing for CMOS devices, (f) process compatibility, and (g) reliability. Many dielectrics appear favorable in some of these areas, but very few materials are promising with respect to all of these guidelines. A review of current work and literature in the area of alternate gate dielectrics is given. Based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward success...

5,711 citations

Journal ArticleDOI
TL;DR: In this article, the authors present new insight into conduction mechanisms and performance characteristics, as well as opportunities for modeling properties of organic thin-film transistors (OTFTs) and discuss progress in the growing field of n-type OTFTs.
Abstract: Organic thin-film transistors (OTFTs) have lived to see great improvements in recent years. This review presents new insight into conduction mechanisms and performance characteristics, as well as opportunities for modeling properties of OTFTs. The shifted focus in research from novel chemical structures to fabrication technologies that optimize morphology and structural order is underscored by chapters on vacuum-deposited and solution-processed organic semiconducting films. Finally, progress in the growing field of the n-type OTFTs is discussed in ample detail. The Figure, showing a pentacene film edge on SiO2, illustrates the morphology issue.

4,804 citations

Journal ArticleDOI
TL;DR: An outlook is presented on what will be required to drive this young photovoltaic technology towards the next major milestone, a 10% power conversion efficiency, considered by many to represent the efficiency at which OPV can be adopted in wide-spread applications.
Abstract: Solution-processed bulk-heterojunction solar cells have gained serious attention during the last few years and are becoming established as one of the future photovoltaic technologies for low-cost power production. This article reviews the highlights of the last few years, and summarizes today's state-of-the-art performance. An outlook is given on relevant future materials and technologies that have the potential to guide this young photovoltaic technology towards the magic 10% regime. A cost model supplements the technical discussions, with practical aspects any photovoltaic technology needs to fulfil, and answers to the question as to whether low module costs can compensate lower lifetimes and performances.

3,084 citations